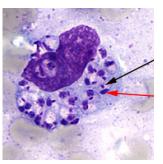
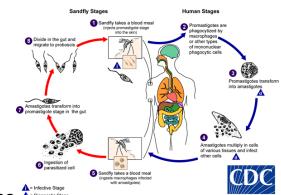


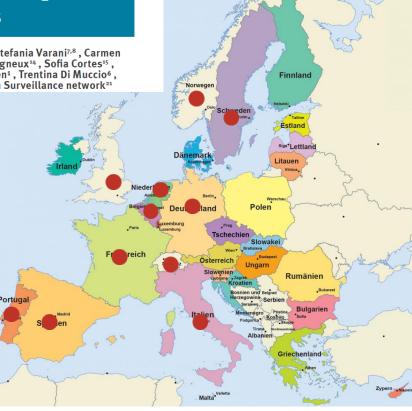
Surveillance of leishmaniasis cases from 15 European centres, 2014 to 2019: a retrospective analysis Annual Meeting SSTMP and SSTTM 2022


Marie-Therese Ruf


Introduction - Leishmaniosis

- Kinetoplastide parasite of the genus Leishmania
- Transmission: blood feeding sandfly
- Clincial presentation
 - Visceral leishmaniasis: Fever, weight loss, anaemia, hepato- and spleno
 - Cuteanous leishmaniasis: Skin lesions
 - Mucocutaneous leishmaniasis: mucous membranes of the nose, mouth and throat
- 15-20 Leishmania species are pathogenic
- Species identification and host factors important for treatment

European LeishMan Network

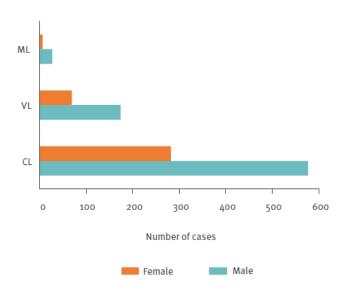

- Established 2010
- 33 centers
- clinicians and clinical laboratory scientists
- No funding
- Aim:
 - to harmonize clinical case management in Europe
 - to optimize detection and identification of parasite
 - to contribute to monitoring and surveillance of diagnosed cases in Europe
 - foster exchange

Surveillance of leishmaniasis cases from 15 European centres, 2014 to 2019: a retrospective analysis

Gert Van der Auwera¹, Leigh Davidsson², Pierre Buffet³, Marie-Thérèse Ruf⁴¹⁵, Marina Gramiccia⁶, Stefania Varani7², Carmen Chicharro⁰, Aldert Bart¹⁰, Gundel Harms¹¹, Peter L. Chiodini²², Hanne Brekke⁴³, Florence Robert-Gangneux¹⁴, Sofia Cortes¹⁵, Jaco J Verweij¹⁶, Alessandra Scarabello¹७, Sara Karlsson Söbirk¹⁶, Romain Guéry¹⁰, Saskia van Henten¹, Trentina Di Muccio⁶, Elena Carra²⁰, Pieter van Thiel¹⁰, Martin Vandeputte¹, Valeria Gaspari७, Johannes Blum⁴¹⁵, LeishMan Surveillance network²¹

Study aim and Methods

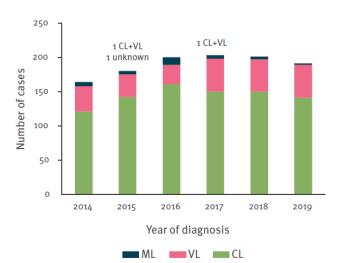
To provide a broad perspective on autochthonous and imported leishmaniasis cases in endemic and non-endemic countries in Europe.

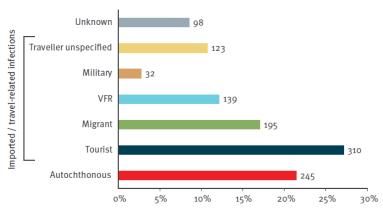

- retrospectively collected records from cutaneous, mucosal and visceral leishmaniasis
- 1142 patients diagnosed between 2014 and 2019
- Imported and autochthonous cases (infection occurred in the same country as diagnosis)

Sex and age distribution

A. Cases by sex and disease type (n = 1,135)

B. Age distribution at diagnosis by disease type (n = 1,122)

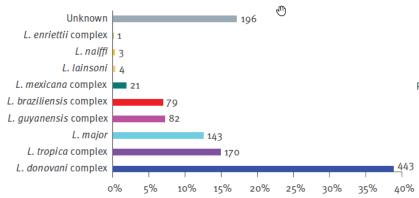

- > 1142 cases recorded
- > 68% male, 32% female
- Median Age: 37



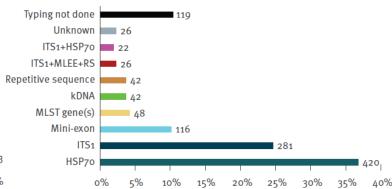
Clinical presentation

C. Annual distribution by disease type (n = 1,142)

D. Reason for staying in endemic area (n = 1,142)


- > 76% CL, 21% VL
- > Majority tourists

Species and diagnostic target

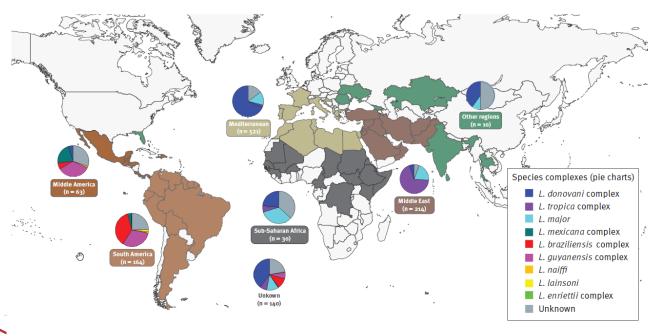

E. Species complexes (n = 1,142)

Taxonomy of the Leishmania genus

Genus	Subgenus	Complex	Species
Leishmania	L. (Leishmania)	L. donovani	L. donovani
			L. infantum (syn. L. chagasi in New World)
		L. major	L. major
		L. mexicana	L. amazonensis (syn. L. garnhami)
			L. mexicana
		L. tropica	L. aethiopica
			L. tropica
	L. (Viannia)	L. braziliensis	L. braziliensis
			L. peruviana
		L. guyanensis	L. guyanensis
			L. panamensis
		L. lainsoni	L. lainsoni
		L. naiffi	L. naiffi
	L. (Enriettii)	L. enriettii	L. siamensis / L. martiniquensis

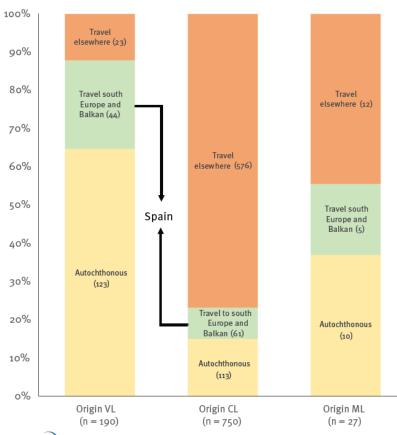
F. Targets used for typing (n = 1,142)

- Dominant species: L. donovani complex
- ➤ Target: HsP70 in 74%

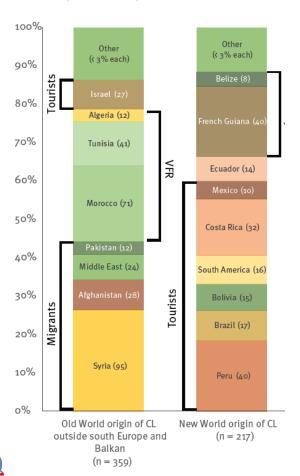


Country of infection determined for 83% of all cases

FIGURE 2


Probable region of infection and *Leishmania* species complex of leishmaniasis cases identified by 15 European centres, 2014-2019 (n = 1,142)

A. Disease types according to populations



- VL mainly aquired in European countries
- CL mainly from travel abroad

C. Import into Europe

- High numbers of importet cases from some countries in the old world, respectively new world
- Old world: mainly migrants and VFR
- ➤ New world: mainly Tourists and Military

Discussion

- trends in autochthonous and imported leishmaniasis cases
 - More male than female in CL and VL
 - Young age in CL cases- mainly imported by tourists from new world
 - VL- autochthonous disease
 - L. infantum only cause of VL
 - Most CL-cases imported from outside Europe (tourists)
 - Limitations:
 - representative for all European countries?
 - autochthonous cases are quite likely underrepresented

Thank you for your attention