Dengue-Fieber: Europa kann impfen - wir nicht

Leute in die Schweiz reisen wie vor der Pandemie. Mediziner rechnen zudem aufgrund des wärmeren Klimas bald mit ersten Ansteckungen innerhalb der

ZÜRICH Die Fälle von Dengue-Fieber in der Schweiz Schweiz. Doch anders als in Europa gibt es bei uns nehmen wieder zu. Vor allem, weil wieder so viele noch keinen zugelassenen Impfstoff gegen den Erreger. Laut Swissmedic ist ein Zuhassungsgesuch noch immer in Prüfung. Gesundheitspolitiker ärgern SEITE 2 sich über «bürokratische Hürden».

Janick «Jack» Baggenstos (23, I.) folgt Fussballprofis

wie Lionel Messi auf Schritt und Tritt: 20 Minuten interviewte den Videografen über seinen Job. Instagram/jackbgs

inuten

-00 13°/23°

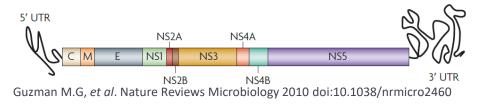
Dr G. Eperon, SMTH, HUG

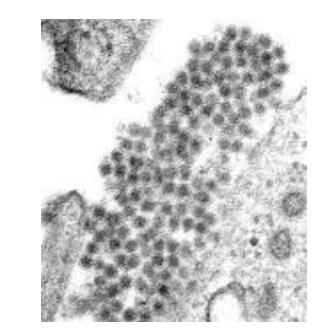
ZÜRICH

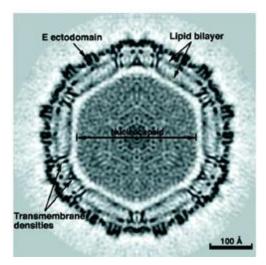
15. September 2023

Freitag,

UPDATE ON DENGUE VACCINATION

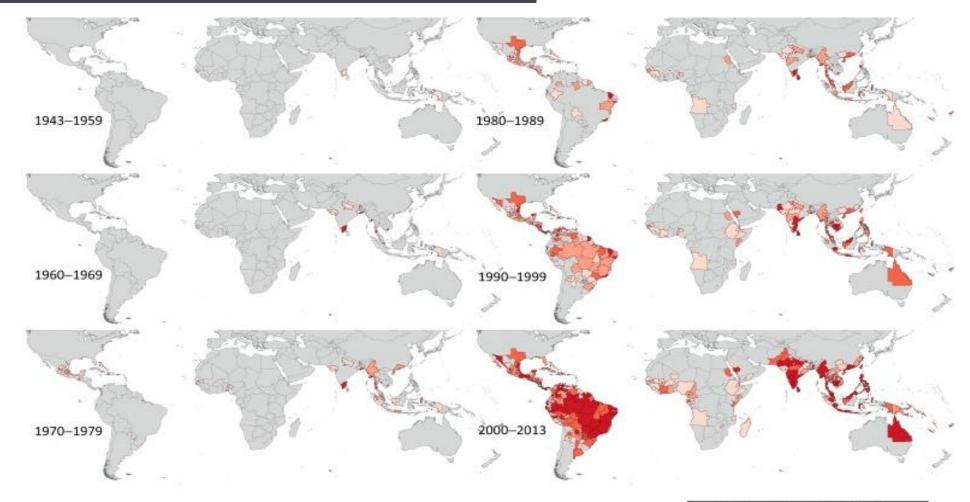

THE PROS & THE CONS


Joint Annual Meeting 2023 | SSI | SSHH | SSTTM | 15.09.2023


Virology Epidemiology Clinical & management Public health measures

- Flavivirus (YF, JE, TBE, WNV...)
 - single stranded RNA (ssRNA)
 - 3 structural proteins (C; M; E) & 7 non-structural proteins (NS1...)

- 4 related but distinct serotypes (DENV-1, DENV-2, DENV-3, DENV-4)
 - genetic variation (shares ~65% of the genome)
 - Production of antibodies (Abs) :
 - homotypic (mainly E protein)
 - &
 - heterotypic (mainly precursor M protein) antibodies (Abs)
 → ADE (antibody-dependent enhancement) phenomenon
- In the blood: presence of mature & immature DENV
- Vector:
 - mosquitoes : Aedes aegypti & A. albopictus

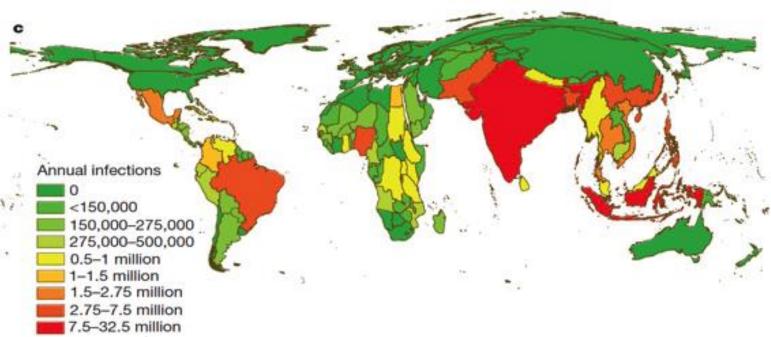

Zhang et al., 2003,

Vaccines

Dengue Fever

Vaccines

Virology Epidemiology Clinical & management Public health measures



DENV Co-circulation. Cumulative number of DENV types reported by decade since 1943.

Nu	nber o	f repor	ted DE	NV types
Key:				
	1	2	3	4

Vaccines

Virology Epidemiology Clinical & management Public health measures

Table 1 | Estimated burden of dengue in 2010, by continent

	Apparent	Inapparent
	Millions (credible interval)	Millions (credible interval)
Africa Asia Americas Oceania Global	15.7 (10.5–22.5) 66.8 (47.0–94.4) 13.3 (9.5–18.5) 0.18 (0.11–0.28) 96 (67.1–135.6)	48.4 (34.3–65.2) 204.4 (151.8–273.0) 40.5 (30.5–53.3) 0.55 (0.35–0.82) 293.9 (217.0–392.3)

Virology Epidemiology Clinical & management Public health measures

- Asymptomatic : ~ 50 80%
- Self-limiting febrile illness (~95% of symptomatic)
 - fever
 - myalgia & arthralgia : 50-70% (of symptomatic), sometimes « severe»: «break-bone disease »
 - rash
 - hyperesthesia, dysesthesia
 - leukopenia, thrombopenia
- Severe dengue (~2-5% of symptomatic)
 - \rightarrow need hospitalization
 - \rightarrow role of NS1 («viral toxin»)
 - ightarrow ADE (antibody-dependent enhancement) phenomenon
- Case fatality rate (CFR) : 0.1 1% (CFR) (~ 5'000 50'000 deaths/year)
 - Risk factor: children & elderly (>65 y.o.)
- Main cause of hospitalization and deaths for children in Asia
- No specific treatment \rightarrow only symptomatic treatment & supportive measures

OMS, 2006; Thomas et al. J Clin Virol 2010 Flasche et al, PLoS Med.2016 Halstead S, et al, JTM 2019; Halstead SB, et al Lancet Child Adolesc Health 2019 Zeng Z. et al. eClinical medicine 2021

Vaccines

Cumulative overall Vaccine efficacy (VE)

D	Dengvaxia®			Qdenga [®]				
	SE-Asia	Latin America			M12	M18	M39	M54
cVE Dengvaxia [®] M25	55%	65%		cVE Qdenga®	80%	73%	62%	61%

Capeding MR et al. Lancet 2014; 384:1358-65 Villar L et al. N Engl J Med 2015; 372:113-23

Vaccines

Expertenkomitee für Reisemedizin Comité d'experts pour la médecine des voyages Comitato di esperti per la medicina di viaggio Expert committee for travel medicine

Swiss ECTM recommandations – 2023 (draft)

- vaccination with <u>Dengvaxia[®] or Qdenga[®]</u> is **not recommended** in travellers with no prior dengue fever.
- vaccination with <u>Qdenga[®]</u> can be considered in travellers (≥4 years old) :
 - with previous dengue infection : confirmed previous Dengue (PCR, Ag or raise of IgM) OR clinical history & IgG+
 AND
 - who are planning a long-term stay (>4 weeks) or multiple trips to an endemic region.
- given the existing cross-reactions with other flav viruses or ther vaccines, particularly in patients living outside endemic DF areas, serology alone without a compatible anamnesis should be interpreted with caution,
- Be aware of lack of knowledge about :
 - the duration of protection

and

- the need for a booster in a population living in a non-endemic area & unable to rely on a "natural booster"

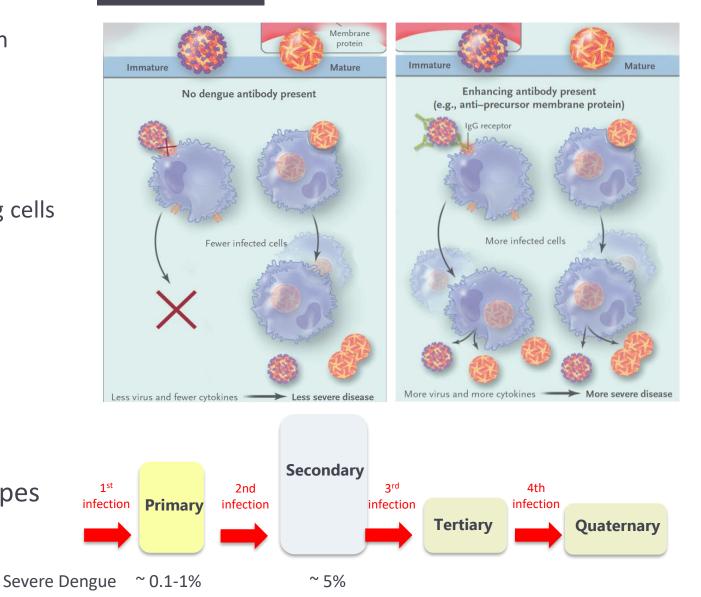
\rightarrow risk-benefit ratio of such a vaccination MUST be taken in consideration

Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

humoral cellular

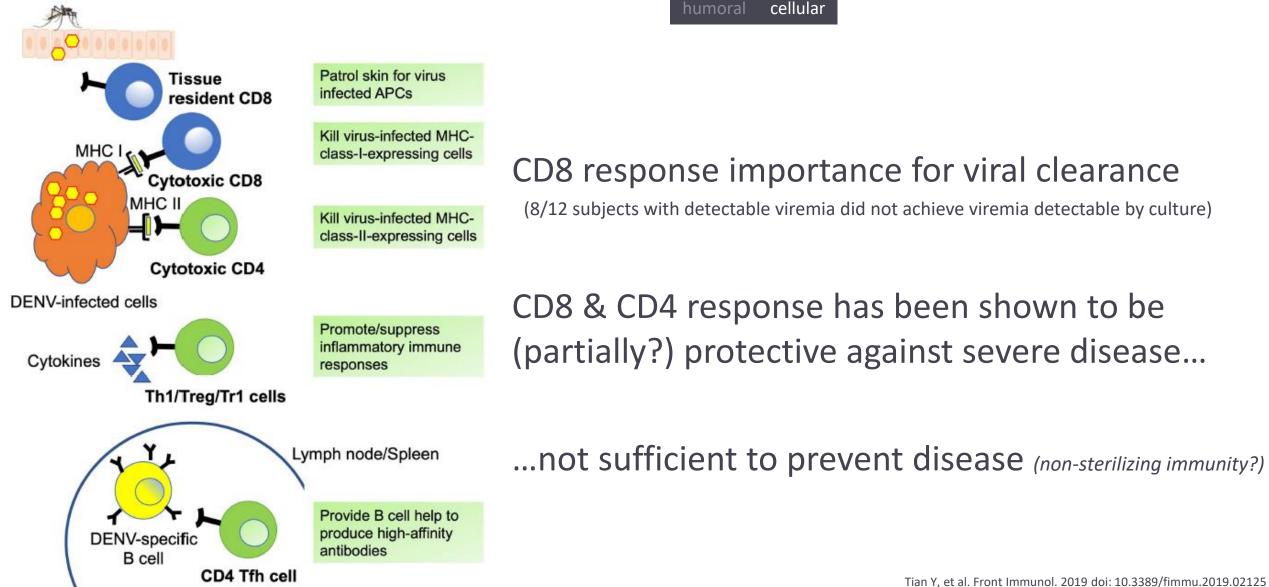
- Homotypic neutralizing-Abs: vs anti-envelope protein & NS serologically specific Life-long immunity; probable sterilizing immunity А Antibody titers Strong, specific Protection response to the **Cross-neutralizing Abs** infecting serotype nAbs cross-reaction among serotypes, only ~12 months 220 heterotypic NON-neutralizing Abs Cross-reactive Illness 1, antibodies rise in vs anti-precursor membrane protein response to infection cross-reaction among serotypes \rightarrow Cause of ADE phenomenon and wane to varying degrees over time heterotypic NS Abs? Serotype 1 Serotype 2 vs NS protein : role in inhibition of NS-1 toxic effect Serotype 3 Serotype 4 Time (months) cross-reaction among serotypes nAbs? or only protection against 1st infection, complication? serotype 1
 - \rightarrow ADE phenomenon = ?, theoretically no


Anderson *et al.* J Inf Dis. 2014 Sharma M, et al. JID 2020 Guy B, et al Vaccines 2020 Kirkpatrick et al, Sci Trans Med 2017

Vaccines

- antibody-dependent enhancement (ADE)
 - mature virus infect mononuclear cells through clathrin-mediated endocytosis
 - immature virus = noninfectious
 - However, in the presence of non-neutralizing anti-precursor membrane protein Abs:
 - \rightarrow immature virus infect IgG receptor–bearing cells
 - *¬* replication
 - *¬* infected cells
 - (7 cytokines)
 - *¬* free NS1 circulation (≈ viral-toxin)
 - \rightarrow more severe disease (capillary-leak)
- → the vaccine should induce long lasting and equal seroprotection vs all 4 serotypes

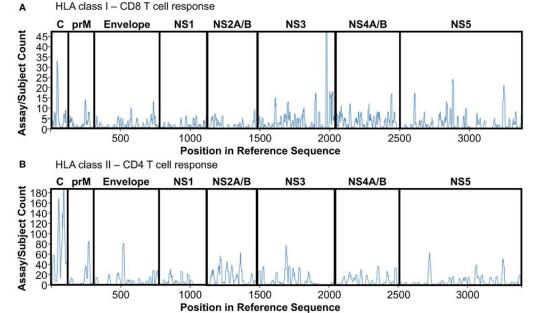
Immunology Development CYD-TDV TAK-003 Others Travellers?


humoral cellular

Schmidt A.C, NEJM 2010 Flasche et al, PLoS Med.2016 Halstead S, et al Lancet Child Adolesc Health 2019, 3:734-41

Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

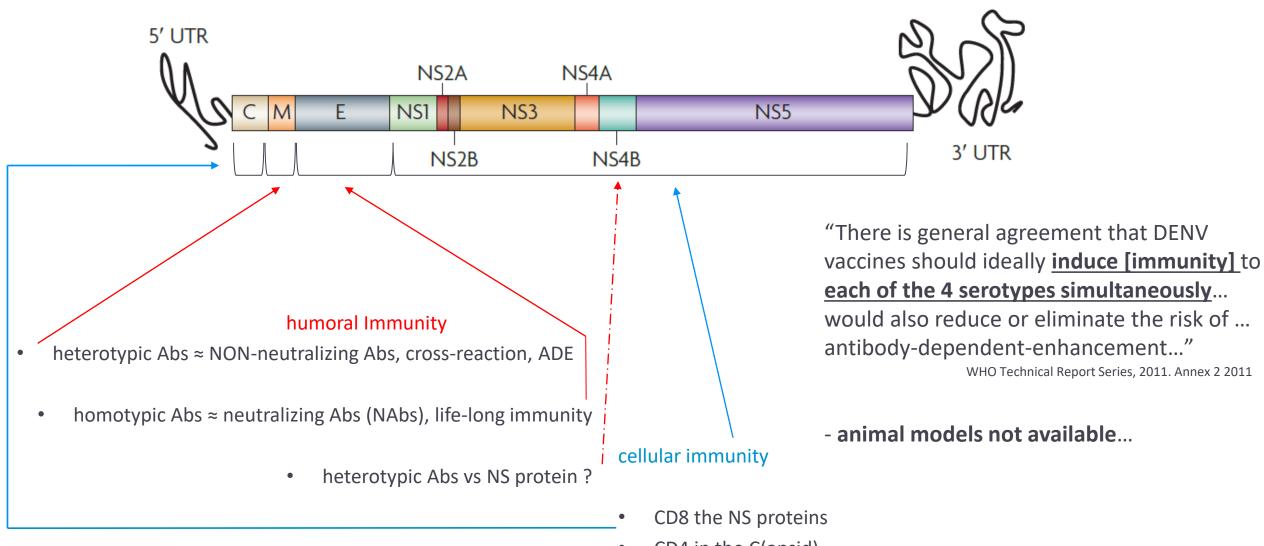


Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

umoral cellular

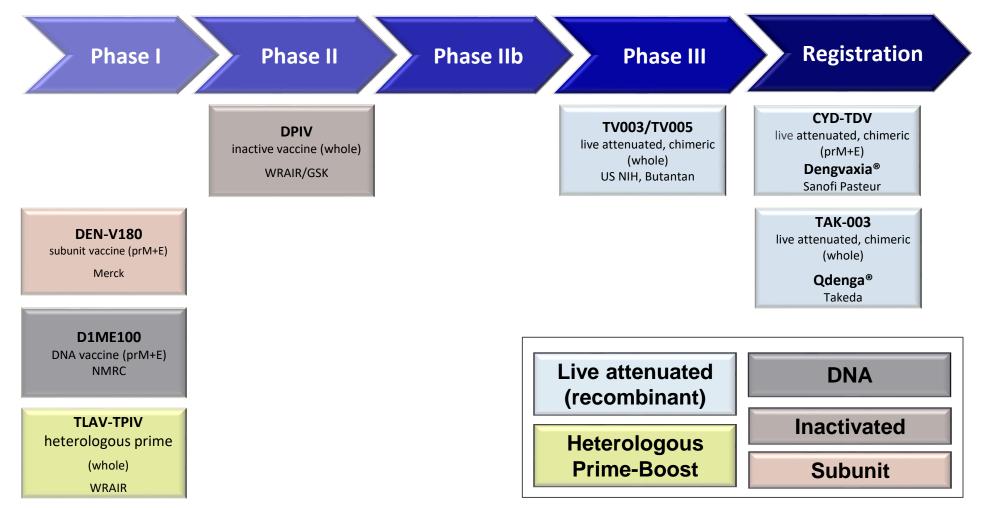
- Majority of CD8 epitopes located in the NS proteins
- Little variations in NS epitopes among serotypes
 - → "original antigenic sin" (≈ ADE for cellular immunity)
 seems not present



High majority (81%) of DENV CD8 epitopes are located in the NS proteins High majority of DENV CD4 epitopes are located in the C(apsid)

> Weiskopf D, PNAS 2013 doi: 10.1073/pnas.1305227110. Tian Y, et al. Front Immunol. 2019 doi: 10.3389/fimmu.2019.02125 Dung NTP, et al. J of Immunol 2010, 184: 7821-7 Waickman AT, et al. Front in Immunol 2019

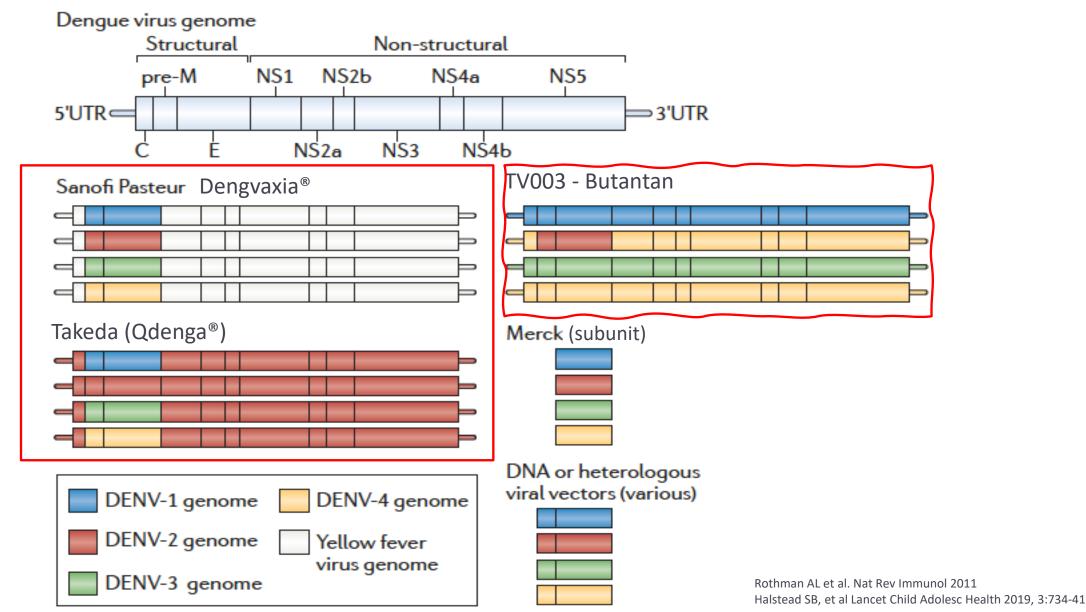
Vaccines


Immunology Development CYD-TDV TAK-003 Others Travellers?

• CD4 in the C(apsid)

Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

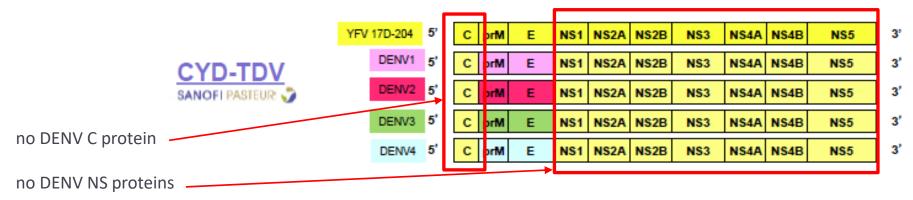

NIH: National Health Institute, NMRC: Naval Medical Research Center, WRAIR: Walter Reed Army Institute of Research

Prompetchara E, et al. APJAI 2019 Halstead SB, et al Lancet Child Adolesc Health 2019, 3:734-41 WHO 2020 http://www.who.int/immunization/research/vaccine pipeline tracker spreadsheet/en/

Acknowledgement to Pr A. Wilder-Smith

Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?


Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

• Dengvaxia[®] : Chimerivax Dengue tetravalent vaccine

- Sanofi Pasteur
- Live attenuated

• Backbone of Yellow fever vaccine + genes for E & prM \rightarrow 4 chimeric

Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

	Vaccine group (N=6848)			Control group (N=3424)		Vaccine efficacy (% [95% Cl])	Analysis		Vaccine Group			Control Group		Vaccine Efficac (95% CI)	
	Cases*	Person-years	Incidence density‡	Cases	Person-years	Incidence density		Cases/ Events*	Person-Yr at Risk†	Incidence Density (95% CI)‡	Cases/ Events*	Person-Yr at Risk'j	Incidence Density (95% CI);:		
	(n)	at risk†	(95% CI)	(n) at risk (95% CI)	(n) at risk (95% Cl)		r	10.	no./100 person-yr	r	10.	no./100 person-yr	%		
rimary analysis (per-protocol)§	117	6526	1.8 (1.5-2.1)	133	3227	4.1 (3.5-4.9)	56.5% (43.8-66.4)	Per-protocol analysis	176/176	11,793	1.5 (1.3–1.7)	221/221	5,809	3.8 (3.3–4.7)	60.8 (52.0–68.0
ntention-to-treat analysis¶	286	13571	2.1 (1.9-2.4)	309	6623	47 (4-2-5-2)	54.8% (46.8-61.7)	Intention-to-treat analysis	277/280§	26,883	1.0 (0.9–1.2)	385/388§	13,204	2.9 (2.6–3.1)	64.7 (58.7–69.8

Dengvaxia®

- age 2- 14 y.o.
 seroprevalence at D0 = 68%
- Outcome at M13-M25
- > hospitalization: 67.2% (95% CI: 50.3-78.6)
- safety vaccine groupe = placebo group
 1 acute disseminated encephalomyelitis (vaccine group)

• >> severe dengue: 95.5% (95% CI: 68.8-99)

seroprevalence at D0 = 79%

- > hospitalization: 80.3% (95% CI: 64.7-89.5)
- safety vaccine groupe = placebo group

Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

Dengvaxia®

	Vaccine g	Vaccine group (N=6848)			group (N=3424)	Vaccine efficacy (% [95% CI])	
	Cases* (n)	Person-years at risk†	Incidence density‡ (95% CI)	Cases (n)	Person-years at risk	Incidence density (95% CI)	_
Efficacy against	VCD, more tha	n 28 days after thi	rd injection in all parti	cipants who	had received thre	e injections	
Serotype 1	51	6548	0.8 (0.6 to 1.0)	50	3210	1.6 (1.2 to 2.0)	50.0% 24.6 to 66.8)
Serotype 2	38	6561	0.6 (0.4 to 0.8)	29	3253	0·9 (0·6 to 1·3)	35·0% (-9·2 to 61·0)
Serotype 3	10	6613	0·2 (0·1 to 0·3)	23	3281	0.7 (0.4 to 1.1)	78·4% (52·9 to 90·8)
Serotype 4	17	6605	0·3 (0·2 to 0·4)	34	3265	1·0 (0·7 to 1·5)	75·3% 54·5 to 87·0)

Capeding MR et al. Lancet 2014; 384:1358-65

Variable		Vaccine Group			Control G	Vaccine Efficacy (95% CI)	
	Cases	Person-Yr at Risk	Incidence Density (95% CI)	Cases	Person-Yr at Risk	Incidence Density (95% CI)	
		no.	no./100 person-yr		no.	no./100 person-yr	%
Modified per-protocol analysis*						_	
Serotype 1	66	12,478	0.5 (0.4–0.7)	66	6,196	1.1 (0.8–1.4)	50.3 (29.1–65.2)
Serotype 2	58	12,495	0.5 (0.4–0.6)	50	6,219	0.8 (0.6–1.1)	42.3 (14.0–61.1)
Serotype 3	43	12,514	0.3 (0.2–0.5)	82	6,213	1.3 (1.1–1.6)	74.0 (51.9–82.4)
Serotype 4	18	12,522	0.1 (0.1-0.2)	40	6,206	0.6 (0.5–0.9)	77.7 (60.2–88.0)

Villar L et al. N Engl J Med 2015; 372:113-23

Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

Table published in the «appendix»

Dengvaxia®

Table 1: Exploratory analysis of vaccine efficacy by age strata, baseline dengue seropositivity, and country; analyses are intention-to-treat

			Vaccine group			Control grou	р	
		Cases (n)	Person- years at risk	Incidence Density (95% CI)	Cases (n)	Person- years at risk	Incidence Density (95% CI)	Vaccine efficacy % (95% CI)
Age strata (N								
2 to 5 years	(2483)	120	3219	3.7 (3.1; 4.4)	89	1584	5.6 (4.5; 6.9)	33.7 11.7; 50.0)
6 to 11 years	(5463)	137	7229	1.9 (1.6; 2.2)	165	3524	4.7 (4.0; 5.4)	59.5 48.9; 68.0)
12 to 14 years	(2329)	29	3123	0.9 (0.6; 1.3)	55	1515	3.6 (2.7; 4.7)	74.4 59.2; 84.3)
Dengue serop	ositivity at b	aseline in the	subset (N)					
Seropositive*	(1340)	18	1811	1.0 (0.6; 1.6)	34	880	3.9 (2.7; 5.4)	74.3 (53.2; 86.3)
Seronegative	(643)	23	838	2.7 (1.7; 4.1)	18	423	4.3 (2.5; 6.6)	35.5 (-26/8; 66.7)

Capeding MR et al. Lancet 2014; 384:1358-65

Table S2: Exploratory analyses of vaccine efficacy by age and by baseline dengue serostatus, and between doses

	Vaccine group			Control g	group			
	Cases	Person-years	Incidence density	Cases	Person-years	Incidence density	Vaccine efficacy	
	(n)	at risk	(95% CI)	(n)	at risk	(95% CI)	% (95% CI)	
Dengue seresta	atus at ba	aseline						
Seropositive ¹	8	2,116	0.4 (0.2-0.7)	23	994	2.3 (1.5-3.5)	83.7 (62.2–93.7)	
Seronegative	9	500	1.8 (0.8-3.4)	9	284	3.2 (1.5-5.9)	43.2 (-61.5-80.0)	

Villar L et al. N Engl J Med 2015; 372:113-23

Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

fiasco de Sanofi Le laboratoire français est-il allé trop vite ? Après le décès de plusieurs enfants aux Philippines l'industriel a dû interrompre brutalement sa

enfants aux Philippines, l'industriel a dû interrompre brutalement sa campagne contre cette maladie tropicale.

LE MONDE SCIENCE ET TECHNO | 06.03.2018 à 06h33 • Mis à jour le 06.03.2018 à 12h02 | Par Lise Barnéoud et **Chloé Hecketsweiler**

Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

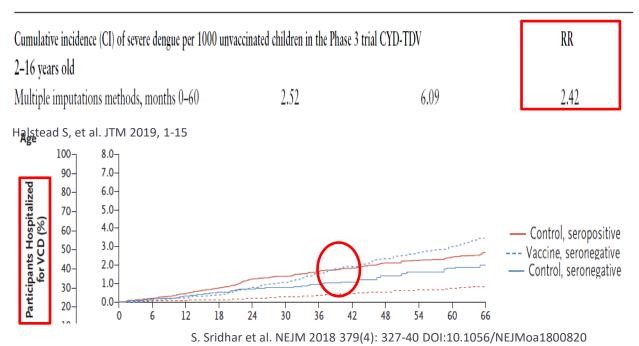
- WHO 21.04.2016:
 - Sub-group analysis : hospitalization risk

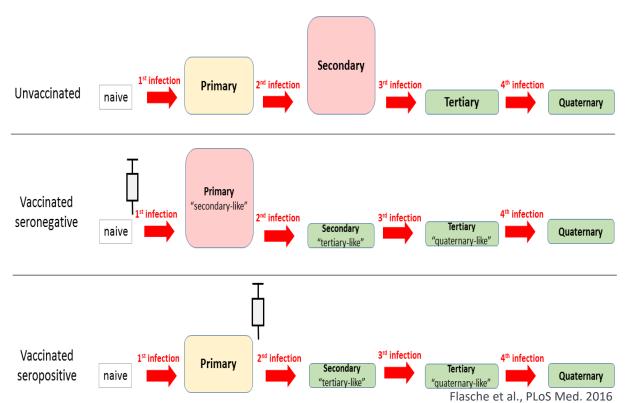
		CYD14 (2-5 ye	ars)
Time Period (Follow up)	CYD group cases	Control group cases	RR (95%Cl)
Year 1 (Active)	8	6	0.64 (0.20-2.32)
Year 2 (Active)	9	7	0.64 (0.21-2.02)
Year 3 (Hospital)	15	1	7.45 (1.15-313.80)
Year 4 (Hospital)	20	7	1.42 (0.58-3.99)
Year 5 (Hospital/SEP)	6	2	1.49 (0.27-15.15)
Acknowledgement to Pr A. Wilder-Smith	-		

Capeding MR et al. Lancet 2014; 384:1358-65

— ↗↗ hospitalizations RR 7,45 (IC à 95%: 1,15 – 313,80)

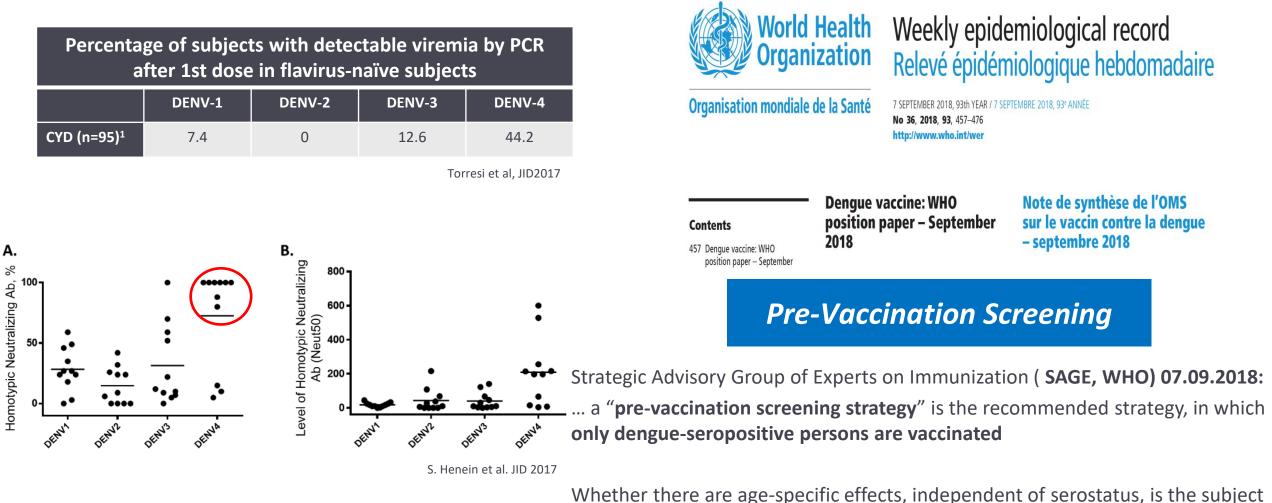
Vaccines


Immunology Development CYD-TDV TAK-003 Others Travellers?


Vaccine efficacy against symptomatic virologically confirmed dengue in the 25 months after dose 1

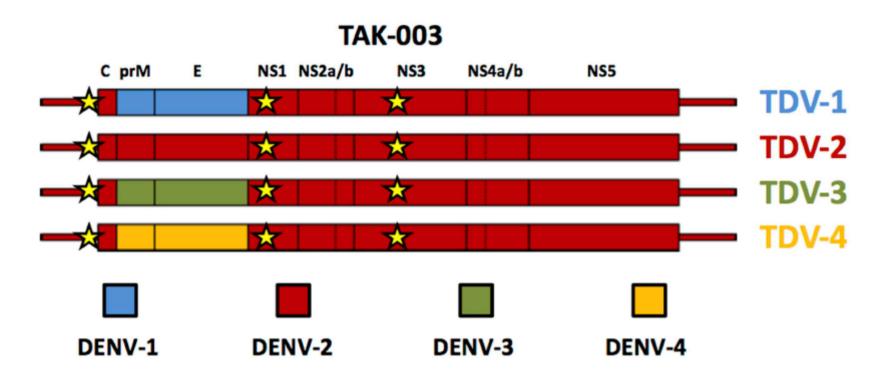
(2-16 year-olds)

Sero-status at dose 1	Vaccine efficacy	95% confidence interval
Sero-positive	72%	58%, 82%
Sero-negative	32%	-9%, 58%


 Table 2. RR of severe dengue in seronegative compared with seropositive children; data derived from the placebo group in the Phase 3 trials of the CYD-TDV dengue vaccine⁹⁶

Vaccines

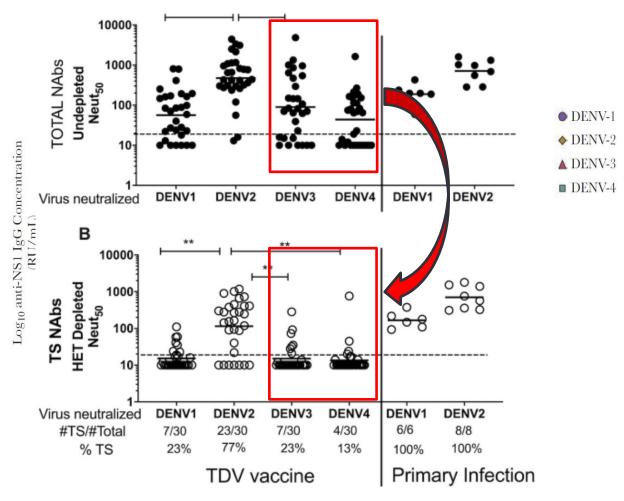
Immunology Development CYD-TDV TAK-003 Others Travellers?



primarily a **DENV4 vaccine** by viremia AND homotypic Ab measurment Whether there are age-specific effects, independent of serostatus, is the subject of ongoing research. Currently, the vaccine **should be used within** the indicated age range, which is typically **9 to 45 years of age**.

Immunology Development CYD-TDV TAK-003 Others Travellers?

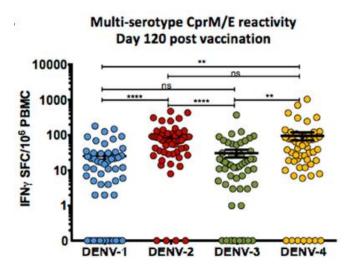
• TAK-003(Qdenga[®]) :

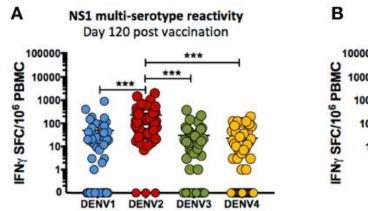


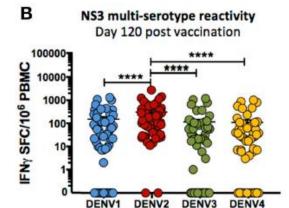
Vaccines

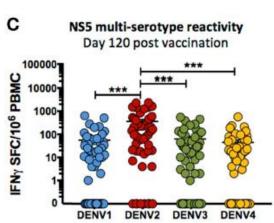
Immunology Development CYD-TDV TAK-003 Others Travellers?

humoral immunity vs


- Strct (E+M) prot & NS prot (DENV-2 NS-1 specific)
- anti-NS1 cross reaction but not complete inhibition NS1-toxin effect (endothelial hyperpermability)
- Geometric mean titres
 - high in all serotypes, but higher in DENV-2
 - Persistent for 48 months
 - DENV-3 & DENV-4 mainly heterotypic nAbs




Sharma M, et al. JID 2020 Tricou V, et al. Lancet 2020 White L, et al. PLoS NTD 2021


Immunology Development CYD-TDV TAK-003 Others Travellers?

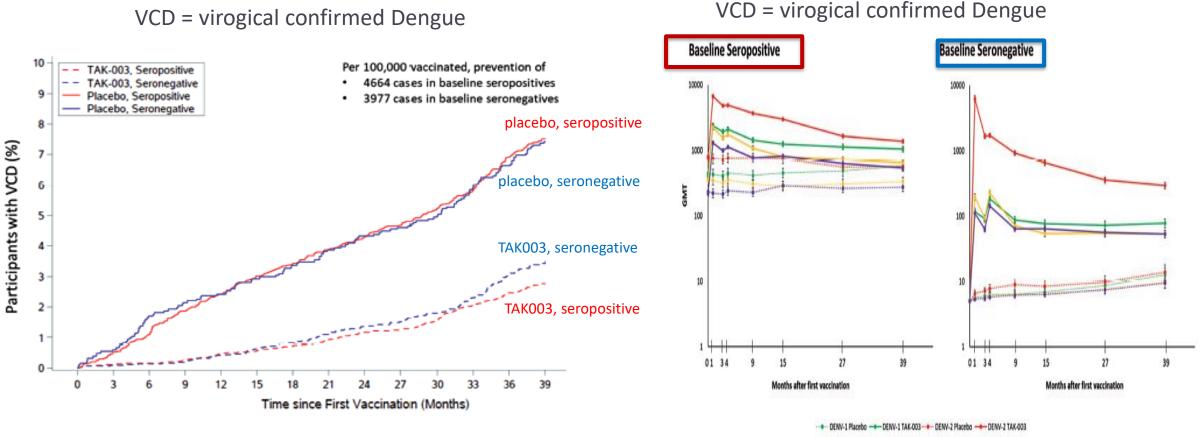
- cellular immunity (at least 4 months) :
 - CD8 cross-immunity vs NS1-5
 - DENV-1,-3,-4 lower than specific DENV-2
 - no cross-immunity for DENV-1 NS1
 - individual-to-individual variation

- Brazil, Colombia, Dominican Republic, Nicaragua, Panama
- Philippines, Thailand,
- Sri Lanka
- Sponsor: Takeda Vaccines
- phase 3 study \rightarrow 54 months after 2nd dose
- 20'099 participants, age 4-16 y.o.
- seroprevalence at D0 = 72.3% (heterogenity from locations)
- 18'260 completed 4-4.5 year after 2nd dose

Outcome at M12-18-39-54

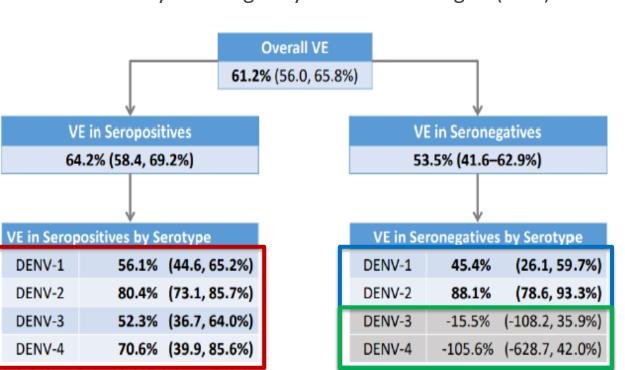
• ↘ cases (virogical confirmed Dengue= VCD)

Cumulativa Vaccina officaav	M12	M18	M39	M54
Cumulative Vaccine efficacy	80%	73%	62%	61%


Vaccines

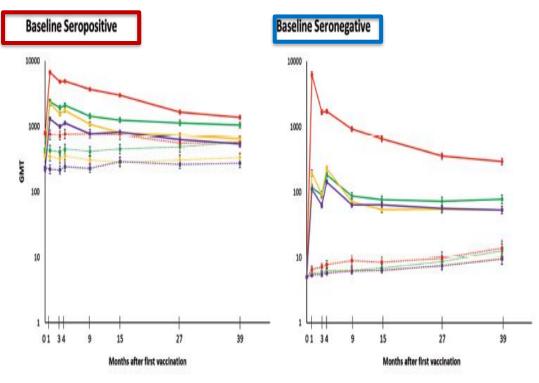
Immunology Development CYD-TDV TAK-003 Others Travellers?

- ↘ hospitalization : cVE (M54) : 84%
- safety vaccine group = placebo group

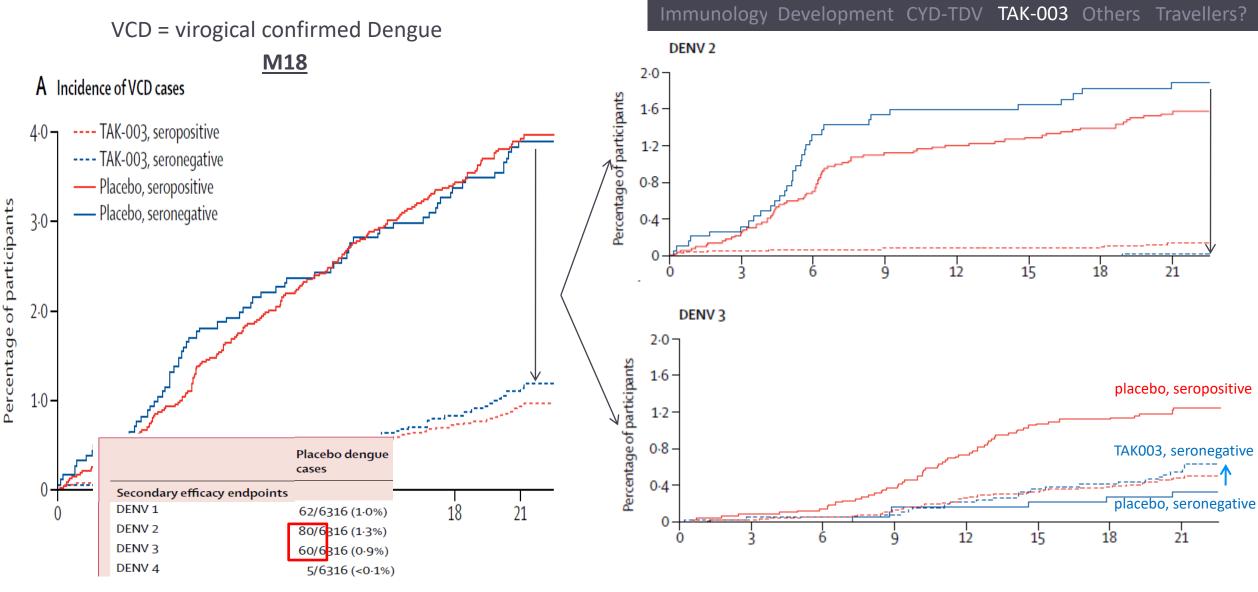

Biswal S, et al. NEJM 2019 Biswal S, et al. Lancet 2020 Rivera L. et al CID 2022 Sponsor's Summary of Product Characteristics 2022

Immunology Development CYD-TDV TAK-003 Others Travellers?

DENV-3 Placebo ----- DENV-3 TAK-003 ----- DENV-4 Placebo ----- DENV-4 TAK-003

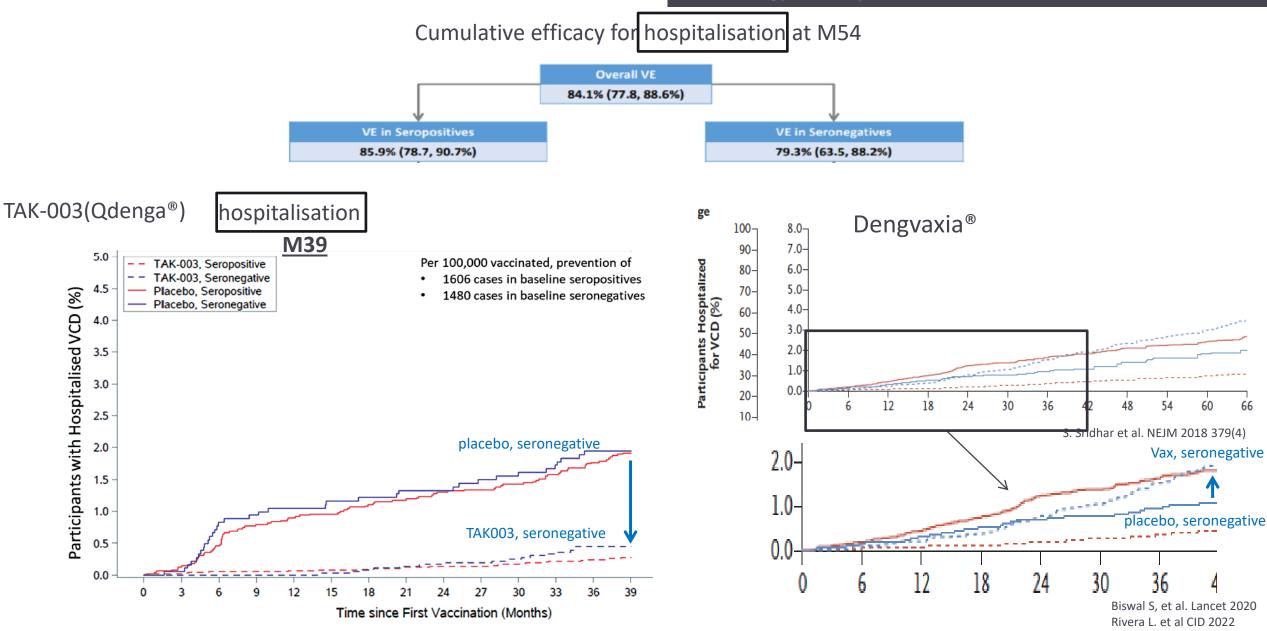

Immunology Development CYD-TDV TAK-003 Others Travellers?

Cumulative efficacy for virogically confirmed Dengue (VCD) at M54


Unpublished data presented by Takeda to ACIP WG

VCD = virogical confirmed Dengue

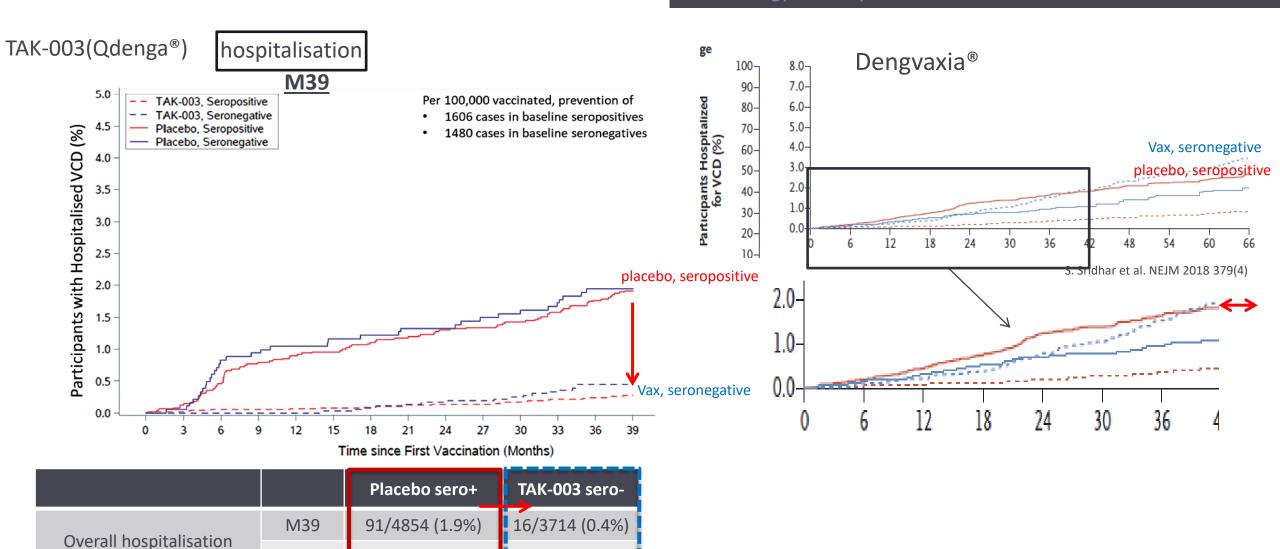
^{*57} months after first dose, significant results bolded. Number for seropositive placebo participants 4,855 and vaccine 9,666; Seronegative placebo 1,832 and vaccine 3,714.


Vaccines

Warning: ~40% of placebo VCD are DENV-2 \rightarrow possible overestimation of overall VE

Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

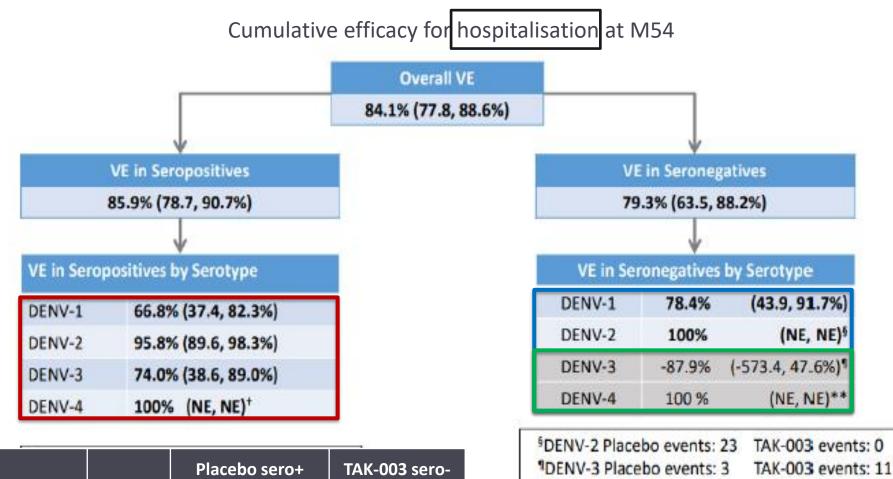


101/4854 (2.1%)

M54

Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?



17/3714 (0.5%)

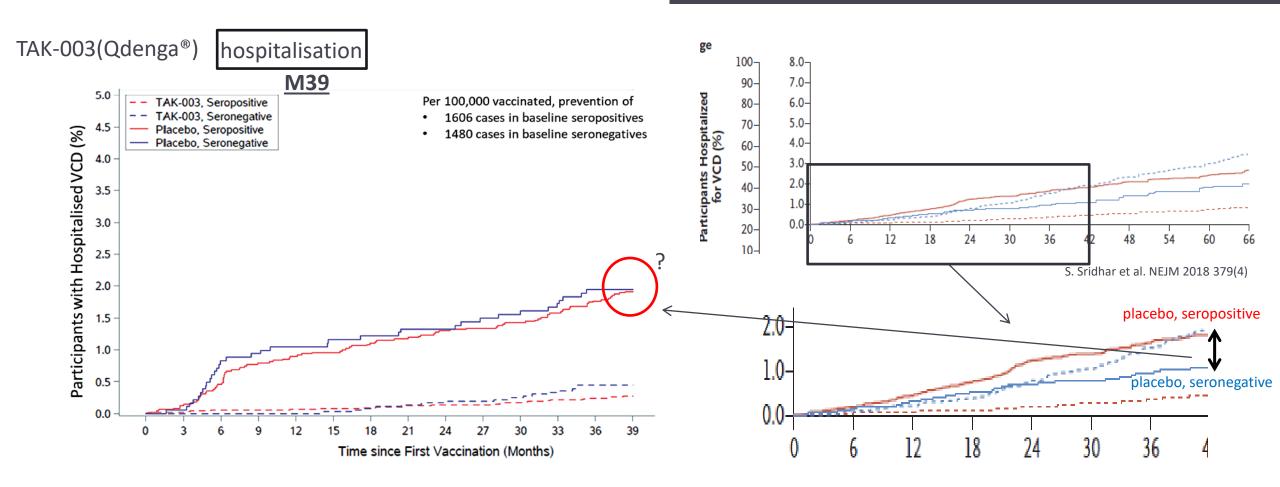
Biswal S, et al. Lancet 2020 Rivera L. et al CID 2022

Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

 \leftrightarrow

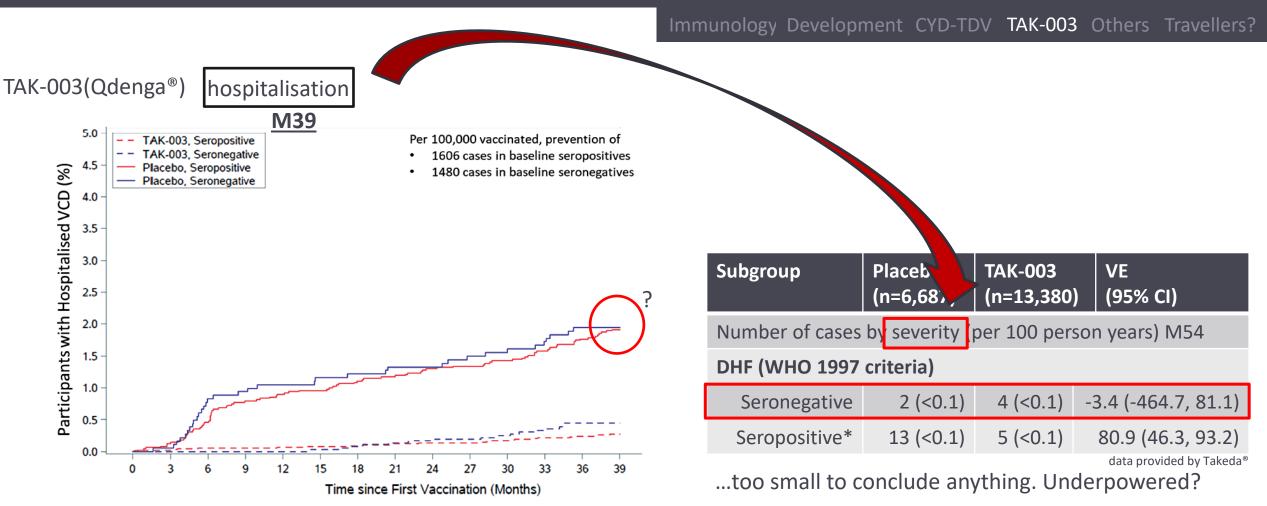
**DENV-4 Placebo events: 1 TAK-003 events: 0


Unpublished data presented by Takeda to ACIP WG

Sponsor's	Summary	of Product	Characteristics	2022

		Placebo sero+	TAK-003 sero-
Querell hereitelisetien	M39	91/4854 (1.9%)	16/3714 (0.4%)
Overall hospitalisation	M54	101/4854 (2.1%)	17/3714 (0.5%)
DENV-3 hospitalisation	M54	15/4854 (0.3%)	11/3714 (0.3%)

Vaccines


Immunology Development CYD-TDV TAK-003 Others Travellers?

no hospitalisation difference between sero+ vs sero- placebo in Qdenga[®] study:

- Bias : Hospitalisation ≠ severity ?
- Coinfection with multiple serotypes ? but does not seem link to severity... [Senarathne U.T.N, et al. Epidemiology and Infection 2020]

Vaccines

no hospitalisation difference between sero+ vs sero- placebo for Qdenga[®]:

- Bias : Hospitalisation ≠ severity ?
- Coinfection with multiple serotypes ? but does not seem link to severity...

Biswal S, et al. Lancet 2020 Rivera L. et al CID 2022

Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

Aa

<

Qdenga®

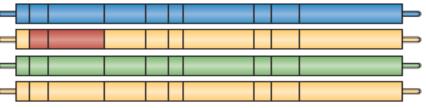
- licensed by EMA & others countries...
- submitted to Swissmedic in April 2023
 - 1st report : mid-september 2023
 - approval ? : august 2024
- Voluntary withdraw from FDA (july 2023)
 - Data collection issues (missing lab data in minority of patients with fever during follow-up?, follow-up visit missing?)
 - efficacy or safety not transmitted...
- Strategic Advisory Group of Experts on Immunization (SAGE), WHO
 - meeting : 25.9.23
 - Official publication: end 2023?

Healthcare & Pharmaceuticals | Approvals | Regulatory | Public Health

Takeda withdraws US application for dengue vaccine candidate

Reuters

July 11, 2023 5:32 PM GMT+2 · Updated a month ago



Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

- TV003 (Butantan):
 - Phase 3 ongoing
 - Whole DFV backbone

- humoral immunity: Strct (E+M) prot & NS prot (DENV-1-3-4 NS-1 specific)
- cellular immunity: NS epitopes for NS1-5 (DENV-1-3-4)

Percentage of subjects with detectable viremia by PCR or culture after 1st dose in flavirus-naïve subjects

	DENV-1	DENV-2	DENV-3	DENV-4
CYD (n=95) ¹	7.4	0	12.6	44.2
TAK (n=74) ²	0	68.9	0	0
TV003 (n=80) ³	63.9	97.2	69.4	52.6

VE TV003 (>24 months)	overall	Sero-	Sero+	
DENV-1	89.5%	85.5%	96.8%	Halstead SB, et al Lancet Child Adolesc Health 2019, 3:734-41 ¹ Torresi et al, JID2017 ² Rupp et al, 2015 ³ Russel et al, Human Vacc & Immuno 2022
DENV-2	69.6%	57.9%	83.6%	
DENV-3/4	n.a.	n.a.	n.a.	
				Thomas S. npj vacc 2023

Vaccines

Immunology Development CYD-TDV TAK-003 Others Travellers?

- "Much more frequent than many of the other travel-associated vaccine-preventable disease"
- \rightarrow ~1-5% travellers in dengue-endemic countries...

2.4% after 1 month travel; 6.9% after 6 months travel

but

only ~17% of secondary infection DF in Europe

rarely cause death in travelers

- Dengvaxia[®]
 - i.m.; M0-M6-M12 (booster?) (however, short-term efficacy after one dose is as high as after 3 doses)
 - 1st dose: (3-)6 months after acute infection
 - NOT licensed in Switzerland, but :
 - 2015: licensed in Mexico & Philippines
 - 2018: EMA-approval : 6-45 y.o. seropositive
 - 2019: FDA-approval: 6-16 y.o. seropositive & living in endemic areas
 - BUT low seroprevalence in travellers...
- Qdenga[®] (TAK-003) and others
 - s.c.; M0-M3 (booster?)
 - 1st dose 2 weeks before trip, then 2nd later might be possible...
 - NOT (yet?) licensed in Switzerland, but :
 - 2022: licensed in Indonesia & Brazil
 - 2022: EMA-approval : > 4 y.o. ... BUT different recommendations according to national societies
 - 2023: voluntary withdraw for FDA-approval...
 - ECTM 2023: possible in DF prior infected travelers and long trip...

Wilder-Smith A, JTM 2019 Wilder-Smith A, Bundesgesundheitsbl 2020 Wilder-Smith A, CISTM18

Vaccines

Expertenkomitee für Reisemedizin Comité d'experts pour la médecine des voyages Comitato di esperti per la medicina di viaggio Expert committee for travel medicine

Swiss ECTM recommandations – 2023 (draft)

- vaccination with <u>Dengvaxia[®] or Qdenga[®]</u> is **not recommended** in travellers with no prior dengue fever.
- vaccination with <u>Qdenga[®]</u> can be considered in travellers (≥4 years old) :
 - with previous dengue infection : confirmed previous Dengue (PCR, Ag or raise of IgM) OR clinical history & IgG+
 AND
 - who are planning a long-term stay (>4 weeks) or multiple trips to an endemic region.
- given the existing cross-reactions with other flaviviruses or their vaccines, particularly in patients living outside endemic DF areas, serology alone without a compatible anamnesis should be interpreted with caution,
- Be aware of lack of knowledge about :
 - the duration of protection

and

- the need for a booster in a population living in a non-endemic area & unable to rely on a "natural booster"

\rightarrow risk-benefit ratio of such a vaccination MUST be taken in consideration

THANK YOU FOR YOUR ATTENTION! **ANY QUESTIONS? NO? GREAT!** BYE.