

Frederique Jacquerioz, MD, MPH, DTM&H Center for viral emerging disease, Division of Tropical and humanitarian medicine

HUG

VIRAL HEMORRHAGIC FEVERS

Viral hemorrhagic fevers (VHFs) are a heterogeneous group of diseases that are caused by over 30 viruses from 4 distinct families of viruses:

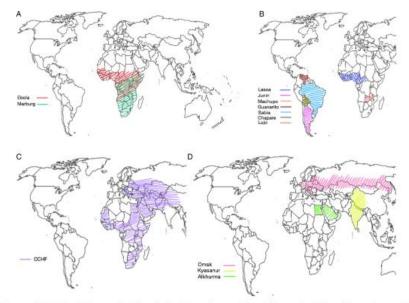


Figure 1 (A) Map of Filoviridae viral haemorrhagic fever (VHF). (B) Map of Arenaviridae viral haemorrhagic fever. (C) Map of Bunyaviridae viral haemorrhagic fever.

Family	Vectors	Disease
Arenaviridae	Rodent	Lujo virus fever Lassa fever Argentine, Bolivian and Venezuelan fever
Filoviridae	Bats	Ebola virus disease Marburg virus disease
Flaviviridae	Mosquito* Tick*	Dengue fever, Yellow fever Omsk fever Kyasanur forest disease
Bunyaviridae	Mosquito* Tick* Rodent	Rift valley fever Crimean-Congo hemorrhagic fever Hantavirus fever

* Arbovirosis and zoonosis : vertebrates, monkeys

VIRAL HEMORRHAGIC FEVERS

Characteristics

All RNA virus

- Start as a non specific febrile illness
- Some VHFs cause relatively mild illness, while others can cause severe, life threatening disease, might include bleeding, or hemorrhaging
- Most VHFs have no known cure or vaccine

Human to human transmission

- Ebola virus disease +++
- Marburg virus disease +++
- Crimean-Congo hemorrhagic fever ++
- Lassa fever +
- Impact on preventive measures and outbreak control

WHO PRIORITY DISEASES IN EMERGENCY CONTEXTS - 2018

Accelerated Research & Development based on

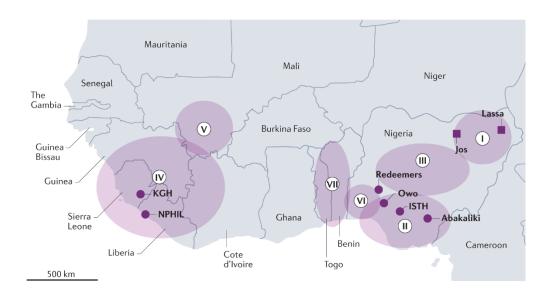
- ... potential to cause a public health emergency
- ... absence of efficacious drugs and/or vaccines

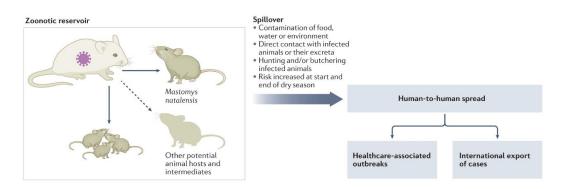
Call for Experts

Open call for experts to serve on time limited Viral Family Working Groups

Deadline for submission: 10 September 2022

- Crimean-Congo hemorrhagic fever
- Ebola virus disease and Marburg virus disease
- Lassa fever
- Middle East respiratory syndrome coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS)
- Nipah and henipaviral diseases
- Rift Valley fever
- Zika
- "Disease X" Disease X represents the knowledge that a serious international epidemic could be caused by a pathogen currently unknown to cause human disease


LASSA FEVER


Epidemiology

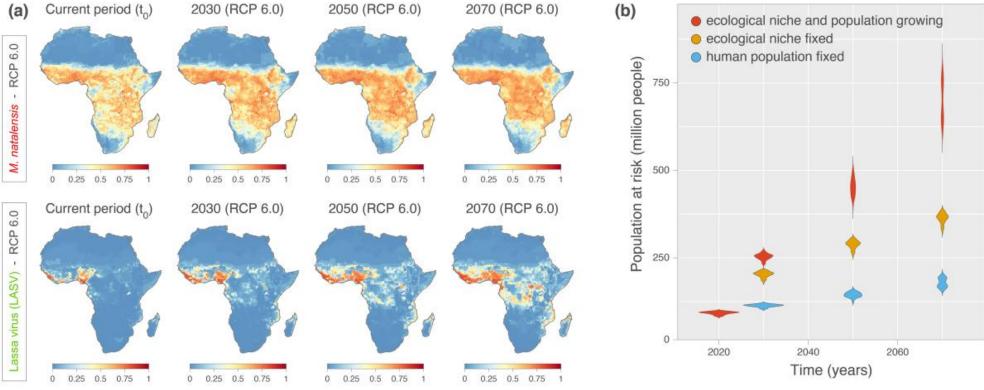
- Discovered in 1969. Endemic in Benin, Ghana, Guinea, Liberia, Sierra Leone, Mali, Togo and Nigeria (sporadic and outbreaks)
- 100'000-300'000 cases/year, underreported, up to 50% seroprevalence in SL and Guinea, ~5'000 deaths/year

Virus

- Lassa virus (LASV), family: Arenaviridae
- 7 genetic lineages (I-VII)
- Zoonosis → main reservoir: peridomestic multimmate rodent : Mastomys natalensis (bushmeat)
- Tranmission: exposure to food or household items contaminated with urine and faeces of infected rats
 - Rodent to human 80%, Human to human 20%

LASSA FEVER

Disease

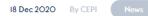

- Incubation 2-21 days
- Gradual onset, aspecific presentation
 - Asymptomatic (subclinic) 80%
 - Complications in severe cases: increased vascular permeability, hypovolemic shock and multiorgan failure
- CFR 1%, up to 80% in pregnant women/fetus 3rd trimester, higher in hospitalized setting
- Neurological sequelae : 34%
 - memory loss, ataxia, neuromuscular discomfort and sensorineural hearing loss
- Supportive care

Public health impact

- Among all VHFs : largest global disease burden after Dengue fever
- \sim 60 million people at risk in endemic regions
 - Increased in the frequency and size of outbreaks (ongoing in Nigeria)
- Data on incidence lacking
- At-risk population
 - Infection/outbreak in health care settings
 - Imported cases (travel-associated)
 - High mortality in pregnant women
- Neurological sequelae in survivors

THE HUMAN POPULATION AT RISK FOR LASSA FEVER LIKELY TO EXPAND

Projected ecological niche suitability of Mastomys natalensis and Lassa virus, as well as human population at risk of exposure to Lassa Virus


Klitting Nature 2022

ENABLE LASSA RESEARCH PROGRAM (CEPI), DEC 2020

≡ CEPI

←

Largest-ever Lassa fever research programme launches in West Africa

NIGERIA Nigeria Centre for Disease Control, Irrua Specialist Teaching Hospital, Federal Medical Centre Owo, Alex Ekwueme Federal University Teaching Hospital Abakaliki, Redeemer's University Nigeria (RUN) and the African Field Epidemiology Network.

BENIN Fondation pour la Recherche Scientifique

LIBERIA Co-led by University of North Carolina at Chapel Hill and Phebe Hospital in partnership with the National Public Health Institute of Liberia

SIERRA LEONE Co-led by Kenema Government Hospital and Tulane University

GUINEA Université Gamal Nasser de Conakry in partnership with Robert Koch Institute

Up to 23,000 participants enrolled in Benin, Guinea, Liberia, Nigeria and Sierra Leone

US 26 million in funding

Aims:

- Number of infection
- Differences in age and gender of people getting infected
- Accurate overview on the proportion of asymptomatic and symptomatic cases.

https://cepi.net/news_cepi/largest-ever-lassa-fever-research-programme-launches-in-west-africa/

VACCINE DEVELOPMENT FOR LASSA FEVER

2 scenarios:

1. Non-emergency setting (preventive use)

- Protection of populations living in areas where Lassa virus is endemic
 - Suitable for pregnant women
 - All age groups
- HCWs, laboratory personnel, deployed international workers

2. Emergency setting (reactive/outbreak use)

- Protection of at-risk persons in the area of ongoing outbreak for the prevention of LF as well as interruption of chains of virus transmission
- Usefull in large outbreak in new/unexpected setting with extensive HHT

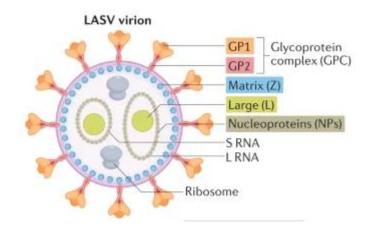
Accelerating the licensure of Lassa vaccines: Generating robust evidence on vaccine efficacy and safety

25 – 26 October 2022

Date: Tuesday 25 October, 2022 & Wednesday 26 October, 2022

Location: Abuja, Nigeria

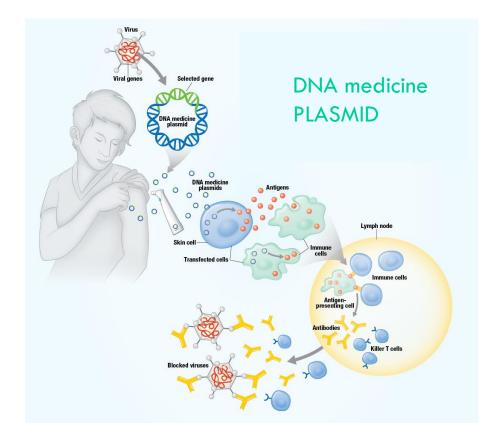
Hybrid Meeting: In-person & Online


The WHO R&D Blueprint Team and Coalition for Epidemic Preparedness Innovations (CEPI) together with the co-hosting partner organisations Nigeria Centre of Disease Control (NCDC) and Africa Centres for Disease Control and Prevention (ACDC), are organising a workshop on "Accelerating the licensure of Lassa vaccines Generating robust evidence on vaccine efficacy and safety".

OPTIMAL CANDIDATES FOR LASSA FEVER VACCINE

- Safety/reactogenicity comparable to WHO recommended routine vaccination
 - No neurological complications associated with LF
- Single dose regimen (without requirement for a booster)
- At least 90% (70%) efficacy in preventing infection/disease caused by LASV lineages I-IV
- •Long lasting immunity (≥ 5 years, min 1 year)
- Injectable (im, sc, id), monodose, maximal volume 0.5ml
- Shelf life at least 5 years at 2-8°C
- Co-administration with other vaccines licensed for the same age

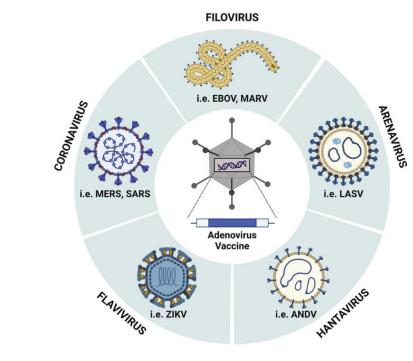
Challenges


- Multiples lineages
- Possible immune mediated complication in survivors
 Sensorineural hearing loss
- Cellular immunity more effective in clearing LASV infection compared to humoral immunity

https://www.who.int/news-room/events/detail/2022/10/25/default-calendar/save-the-date--accelerating-the-licensure-of-lassa-vaccines--generating-robust-evidence-on-vaccine-efficacy-andsafety

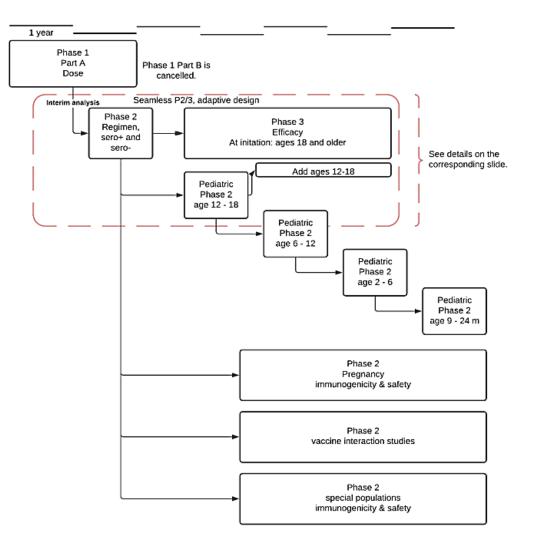
INO-4500 (INOVIO/CEPI)

- Optimized DNA plasmid encoding GPC lineage IV (Josiah strain)
- 2 dose regimen
- ID (//mantoux) followed be ID electroporation
- Generate cellular and immune response in animal models
- Vaccine immunogenicity demonstrated in animal models
- Vaccine efficacy demonstrated in NHPs
 - Protection up to 1 year
 - No hearing loss (in NHPs)
- Cross-reactivity against lineages 1- IV, VII
- LSV 001 Phase 1 (safety, tolerability and immunogenicity) completed in Oct 2022 (US)
 - 40/20 participants, No safety concerns, no related SAEs
- LSV 002 Phase 1b completed in Sept 2022 (Ghana)
 - 176/44 participants, No safety concerns, no related SAEs, met target immune response
- LSV 201 Phase 2a in West Africa: in planning, all age group


ChAdOx1-Lassa-GPC (University of Oxford)

• Non replicating simian adenoviral vectored vaccine encoding the GPC lineage IV (Josiah strain)

- No pre-existing immunity (simian Ad)
- Induced strong cellular and humoral immune responses after single dose
- Suitable for large scale, low cost manufacture
- Can be stored at 2-8°C for at least 6 months
- Single or prime-boost delivery
- Vaccine efficacy demonstrated in guinea pigs (homologous challenge)
- Cross-reactivity (lineage I-III) demonstrated in mice, GP challenge
- Vaccine efficacy demonstrated in NHPs


In planning Phase 1 studies:

- Phase 1a : UK
- Phase 1b : West Africa

EBS-LASV (EMERGENT/CEPI)

- rVSV vectored vaccine encoding the GPC lineage IV (Josiah strain)
- Possible long term storage at -20°C and at least 6 months at 4°C
- Single dose regimen, im
- Vaccine efficacy demonstrated in NPHs
- Cross-efficacy for lineage II in NPHs
- Phase 1 studies initiated in Ghana
- In planning innovative adaptive phase 2/3 studies in West Africa

https://www.emergentbiosolutions.com/products-services/pipeline/

rVSV Δ G-LASV-GPC (IAVI/CEPI multiple partners)

- Replication-competent, recombinant viral vector encoding the GPC lineage IV (Josiah strain)
- Single dose delivery, im
- Vaccine efficacy demonstrated in NHPs
 - Protection up to 1 year
- Cross-neutralization demonstrated in NHPs (lineage I-III, VII)
- Protection as soon as 3 days after vaccination (lethal challenge)
- Phase 1 study US : No related SAEs, no hearing loss, <2 days of symptoms</p>
 - Liberia: ongoing
- Phase 2a study (safety & tolerability) ongoing in Sierra Leone, Liberia and Nigeria. Healthy adults, children, HIV+
- Phase 2b study (dose-ranging) ongoing in Sierra Leone, Liberia and Nigeria
- Future phase 2b/3 study (safety & efficacy) in Sierra Leone, Liberia and Nigeria

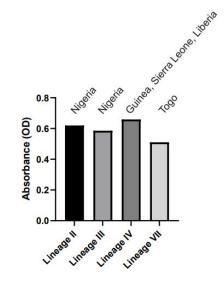
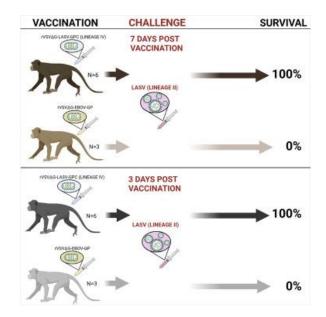



Figure 2. A pool of high responding vaccinee samples was tested at 1:500 dilution for binding to LASV GP from Lineages II,III, IV and VII

CHALLENGES : MULTIPLES LINEAGES, DOSE REGIMEN

	LASV Vaccine	Vacationa Daniman	Efficacy against LASV		Viremia after	Correlates of	n ć
Vaccine Candidate	Antigen(s)	Vaccine Regimen	Lineage IV ^a	Other Lineages	Challenge ^b	Protection	Ref
Recombinant vaccinia virus	GP (JOS) NP GP&NP	Single vaccination, at four sites, total 1 × 10 ⁹ PFU, ID	88% 20% 90%	ND	Low-moderate High Low-moderate	СМІ	[47]
Reassortant MOPV/LASV, ML29	GP&NP (JOS)	One dose, 1×10^3 PFU, SC	100%	II–100% (guinea pigs)	<ld< td=""><td>Sterilizing CMI</td><td>[21,69,70,88]</td></ld<>	Sterilizing CMI	[21,69,70,88]
rVSV∆G/LASVGPC	GP (JOS)	One dose, $1-6 \times 10^7$ PFU, IM	100%	I and V–100% (guinea pigs)	Low, transient	NAbs? CMI?	[23,46]
MV-LASV	GP & NP (JOS)	One dose, 2×10^6 TCID ₅₀ , SC	100%	ND	<ld< td=""><td>Non-NAbs and CMI</td><td>[51]</td></ld<>	Non-NAbs and CMI	[51]
rVSV-N4∆G-LASVGPC in Quadrivalent VesiculoVax	GP (JOS)	Two doses, 1×10^7 PFU, IM	-	II-100%	<ld 4="" 5<br="" in="" of="">NHPs.</ld>	ND	[86]
VEEV-TC83 RNA replicon particles	GP (JOS&LP)	Two doses, 1×10^7 , SC	80%	20%	Moderate	ND	Lukashevich, Unpublished [27]
MOPEVACLASV	GP (JOS)	One dose, 6×10^6 PFU/dose, IM	100%	ND	Low, transient	Non-NAbs, CMI	[51]
DNA	GP (JOS)	Two immunizations, 20mg DNA at four sites, ID electroporation	100%	ND	ND	NAbs? CMI?	[78,79]

Table 4. Advanced LASV vaccine candidates tested in "proof-of-concept" efficacy trials in non-human primates (NHPs).

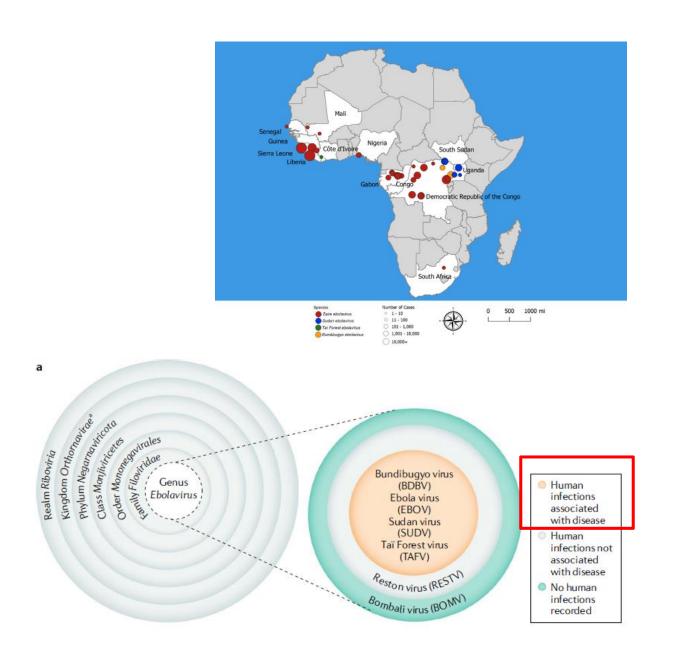
^a Challenge dose: 1 × 103–1 × 104 PFU of LASV/JOS (Lineage IV), route of inoculation: SC or IM. LASV-Z32 (Lineage IV) was also used [23]. ^b Low-moderate, 103–104 PFU/mL; high, >104 PFU/mL. Abbreviations: JOS, LASV Josiah strain; LP, LASV LP strain (Lineage I); CMI, cell-mediated immunity; FFU, fluorescent forming units; GP, glycoprotein; GP and NP, simultaneous expression of NP and GP in the same vector; ID, intradermal; IM, intramuscular; LASV, Lassa virus; LD, limit of detection; NAbs, neutralizing antibody responses; ND, not done; NHP, non-human primate; NP, nucleoprotein; PFU, plaque-forming unit; SC, subcutaneous. Modified from: Lukashevich, I.S.; Paessler, S.; de la Torre, J.C. Lassa virus diversity and feasibility for universal prophylactic vaccine. F1000Research 2019, 8, F1000 Faculty Rev-134.

FUTURE DIRECTIONS AND PHASE 3 STUDY

Use the GPC in the prefusion state to overcome LASV diversity.

Phase 3 study

- Cellular immune response, incl T/B cell memory
- Long term protection against hospitalization
- Vaccine efficacy against LF associated death
- Vaccine efficacy against asymptomatic Lassa infections
- Review data for potential evidence for a CoP (would require post vaccination blood sample from every trial participants to analyse breakthrough cases)


EBOLA VIRUS DISEASE

Epidemiology

- Discovered in 1976
- Epidemic (sporadic, small and large outbreak in multiple countries)

Virus

- Family: Filoviridae
- Genus: Ebolavirus
- Species : Bundibugyo/Sudan/Zaire/Taï Forest/Reston/Bombali ebolavirus
- Zoonosis \rightarrow reservoir: bats??, vertebrates
- Transmission:
 - Animal (reservoir, vertebrates) to human, sporadic
 - Human to human +++

EBOLA VIRUS DISEASE

Disease

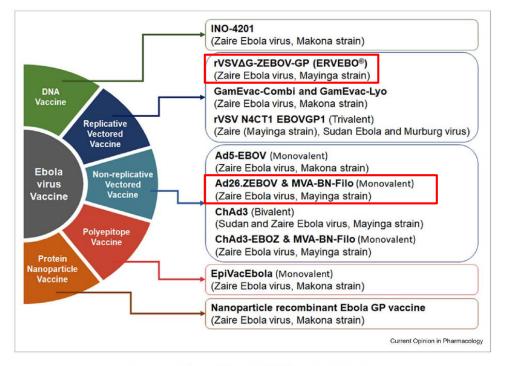
- Incubation 3-21 days
- Abrupt onset, aspecific acute febrile illness
- Narrow clinical sprectrum \rightarrow severe illness
 - -->Progression to shock and multiorgan failure
- CRF ~40-50% (25-90%), higher in pregnant women and in people less than 5 and over 40
- Long term impact:
 - Virus persistence (CNS, testes, eyes)
 - Arthralgias 87%
 - Ocular symptoms 14-60%
 - Social isolation, depression, cognitive deficit, long term disability

Public Health Impact

- Potential for large outbreak → most transmissible VHF
- Disease of caretakers
 - Healthcare workers
 - Funeral practices
 - Caretaking at home
- Increased in the frequency and size of outbreaks
- Neurological & psychological sequelae in survivors

EBOLA VIRUS DISEASE

Outbreaks:


- 1976-1999:10
- 2000-present: 23

Outbreaks Sudan virus disease: 8 (5 in Uganda)

Years	Country	Species	#Cases	#Deaths (CFR)
1976	Zaire (->DRC)	Zaire ebolavirus	318	280 (88%)
1976	Sudan (->South Sudan)	Sudan ebolavirus	284	151 (53%)
1977	Zaire (->DRC)	Zaire ebolavirus	1	1 (100%)
1979	Sudan (->South Sudan)	Sudan ebolavirus	34	22 (65%)
1994	Gabon	Zaire ebolavirus	52	31 (60%)
1994	Ivory Coast	Thaï Forest ebolavirus	1	-
1995	Zaire (->DRC)	Zaire ebolavirus	315	250 (81%)
1996	Gabon	Zaire ebolavirus	37	21 (57%)
1996	Gabon	Zaire ebolavirus	60	45 (74%)
1996	South Africa	Zaire ebolavirus	2	1 (50%)

Years	Country	Species	#Cases	#Deaths (CFR)
2000	Uganda	Sudan ebolavirus	425	224 (53%)
2001	Gabon	Zaire ebolavirus	65	53 (82%)
2001	Republic of Congo	Zaire ebolavirus	57	43 (75%)
2002	Republic of Congo	Zaire ebolavirus	143	128 (89%)
2003	Republic of Congo	Zaire ebolavirus	35	29 (83%)
2004	Sudan (->South Sudan)	Sudan ebolavirus	17	7 (41%)
2007	DRC	Zaire ebolavirus	264	187 (71%)
2007	Uganda	Bundibugyo ebolavirus	149	37 (25%)
2008	DRC	Zaire ebolavirus	32	15 (47%)
2011	Uganda	Sudan ebolavirus	1	1 (100%)
2012	Uganda	Sudan ebolavirus	11	4 (36%)
2012	DRC	Bundibugyo ebolavirus	36	13 (36%)
2012	Uganda	Sudan ebolavirus	6	3 (50%)
2014-16	Multiple countries	Zaire ebolavirus	28646	11323 (39%)
2014	DRC	Zaire ebolavirus	66	49 (71%)
2017	DRC	Zaire ebolavirus	8	4 (50%)
2018	DRC	Zaire ebolavirus	54	33 (61%)
2018-20	DRC, Uganda	Zaire ebolavirus	3470	2287 (66%)
2020	DRC	Zaire ebolavirus	130	55 (42%)
2021	DRC	Zaire ebolavirus	12	6 (50%
2021	Guinea	Zaire ebolavirus	23	12 (52%)
2021	DRC	Zaire ebolavirus	11	6 (55%)
2022	DRC	Zaire ebolavirus	5	5 (100%)
2022	Uganda	Sudan ebolavirus	ongoing	ongoing

EBOLA VACCINE DEVELOPMENT

Current vaccine candidate of EBOV. EBOV, Ebola virus.

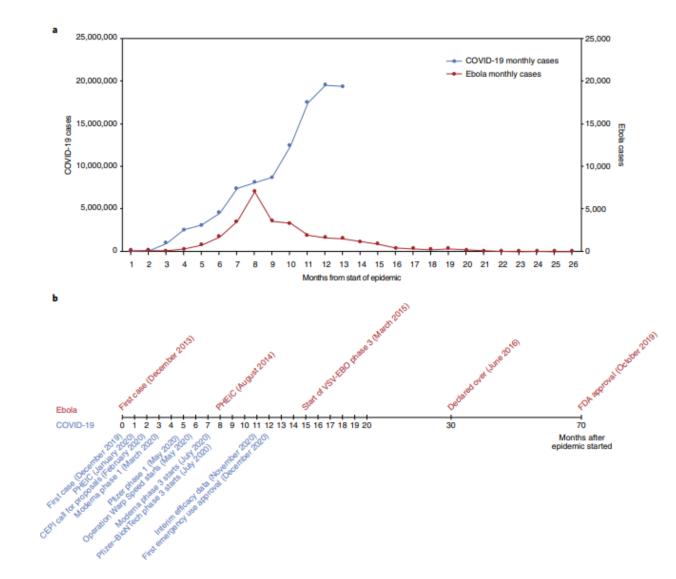


Fig. 1 | A comparison of the epidemic curves and vaccine development timelines between the 2014 West African Ebola outbreak and COVID-19. a, The number of months from the onset of the epidemic is shown against the number of reported cases per day. Note that the COVID-19 (left) and Ebola (right) axes are scaled differently. b, Vaccine development timelines for COVID-19 versus Ebola in the context of particular events during the respective outbreaks. PHEIC, public health emergency of international concern.

APPROVED EBOLA VIRUS DISEASE VACCINE

ERVEBO® (a.k.a. rVSV-ZEBOV-GP) (MERCK)

- Replication-competent, live, attenuated rVSV vectored vaccine
- Active against Zaire ebolavirus
- Single dose delivery, im (booster >6 months)
- Single-dose vials
- Logistics:
 - Storage at -80°C to -60°C protected from light
 - Storage refrigerated at 2°C to 8°C for 2 weeks possible
 - Thawing at room temperature. Usage within 4h.

- **FDA approved** for >18 (December 2019)
 - Vaccine eligibility (US 2020)
 - Ebola virus disease responders
 - Laboratorians and support staff working with live virus
 - Healthcare workers at federally designated Ebola Treatment Centers
- European Medicines Agency approved (2019)
- Approved in other countries
 - Burundi, Central African Republic, Democratic Republic of the Congo, Ghana, Guinea, Rwanda, Uganda, Zambia
- Insufficient data in pregnant women, children and immunocompromised persons
 - Use from 6m and older and pregnant women during outbreaks

APPROVED EBOLA VIRUS DISEASE VACCINE

- Complete protection after 7 days, partial protection after 3 days in NHPs
- Vaccine efficacy (100%) in human supported by a phase 3, open-label, cluster-randomized, controlled ring vaccination in Guinea (2014-16)
- In human: persistence of Ab response up to 2 years post vaccination
- No correlate of protection
- Booster?

1st generation of vaccine (reactogenecity) Immunity against the VSV backbone? Long term immunity Single dose delivery (outbreak)

- Adverse events (vaccine safety):
 - Reactogenecity +++
 - Arthralgia (onset 0-42 DPV) : 2.9 -40%
 - Reported within a few days, resolved within a week
 - Vaccine virus detected by rRT-PCR in 4 patients with joint complaints (no virus isolation)
 - Severe arthralgia (onset 0-42 DPV) : 0-1.7%, significant joint pain that prevents daily activities
 - Arthritis (onset 5-56 DPV) : 0-23.5%
 - Reported after 1 week (associated factors: sex-female and medical Hx of arthritis), resolved within weeks
 - Cutaneous vasculitis, vesicles
 - Serious adverse events: 3/15'399 (febrile Rx, anaphylactic Rx, influenza like illness)

APPROVED EBOLA VIRUS DISEASE VACCINE

Ad26.ZEBOV (Zabdeno®) and MVA-BN-Filo (Mvabea® (JANSSEN)

- Prime-boost delivery, im
- Dose primer Ad26.ZEBOV
 - Non replicating, recombinant viral vector
 - Human Adenovirus encoding the zaire ebolavirus GP
- Booster with MVA-BN-Filo (8wks later)
 - Non replicating, viral vector
 - MVA encoding the GP zaire and sudan ebolavirus, Marburg virus and the NP Tai Forest ebolavirus

Limited impact of vector immunity Ability to accommodate multigene inserts Vector stability Better tolerated Not suitable for outbreaks?

- Logistics
 - Storage at -85 to 55°C
 - Transportation frozen at -25°C to -15°C
 - Storage at 2-8°C for up to 8 month for Ad26.ZEBOV and up to 1 month for MVA-BN-Filo
- Approved by EMA 2020
- Clinical studies: Phase 1,2, 3 (Europe, US, Africa) → data on safety & immunogenicity, no study on the efficacy of preventing ebola virus disease in an outbreak situation.
- Healthy adults, HIV+, Children
- Special populations :
 - Insufficient data in pregnant and breastfeeding women, and immunocompromised
 - Authorized by the EMA for children aged > 1 year
- Safety profile acceptable (fewer AEs than rVSV platform)
- Persistance AB at 1 year 50-100%

EBOLA VIRUS VACCINE CANDIDATES

Approved vaccine for EBOV						
Name	Species	Developer	License	Phase	Year	Ref
ERVEBO® (rVSV-ZEBOV-GP, v920)	Zaire EBOV	Merck Sharp and Dohme Corp.	U.S. License No. 0002	FDA approved	2019	[25,31]
GamEvac-Combi (vaccine)	Zaire EBOV	Russian Federation	Licensed in Russia	-	2019	[34]
Zabdeno and Mvabea (Ad26.ZEBOV, MVABN-Filo)	Zaire EBOV	Johnson & Johnson	-	Approved in EU	2020	[34,37]
Ad5-EBOV	Zaire EBOV (Makona)	Academy of Military Medical Sciences and CanSino Biologics	Licensed in China	-	2017	[34,43,
Clinical trial status of vaccines for EBOV (Clinical	Trials (www.clinical	trials.gov), FDA (www.fda.gov)) [40,4	12]			
Name	Species	Country	Phase	Status	Period	Ref
Ad26.ZEBOV Batch	Zaire EBOV	USA	Phase 3	Completed	2015-2016	[40]
#1, 2 and 3, MVA-BN-Filo						
(ChAd3-EBO-Z) (GSK3390107A)	Zaire EBOV (Mayinga)	Cameroon, Mali, Nigeria, Senegal	Phase 2	Completed	2015-2016	[45,46]
VSV-GZEBOV, ChAd3-EBO Z	Zaire EBOV	Liberia	Phase 2	Active, not recruiting	2015-2020	[47]
Ad26.ZEBOV, MVABN-Filo, rVSV#GZEBOV-GP	Zaire EBOV	Guinea, Liberia, Mali, Sierra Leone	Phase 2	Active, not recruiting	2017-2024	[40]
cAd3-EBOZ vaccine	Zaire EBOV (Mayinga)	Switzerland	Phase 1, Phase 2	Completed	2014-2015	[32]
GamEvac-Lyo, GamEvac-Lyo (component A), GamEvac-Lyo (component B)	Zaire EBOV	Russian Federation	Phase 1, Phase 2	Completed	2017-2018	[40]
BPSC-1001 (VSV#G-ZEBOV)	Zaire EBOV	Unknown	Phase 1	Completed	2014-2015	[40]
(cAd3-EBO Z), Booster-MVA-BN® Filo	Zaire EBOV (Mayinga)	Mali	Phase 1	Completed	2014-2016	[32,47]
HPIV3-EbovZ GP Vaccine	Zaire EBOV	USA	Phase 1	Completed	2015-2016	[40]
VRCEBOADC069-00-vp, MVA-EbolaZ	Zaire EBOV	Mali	Phase 1	Completed	2015-2016	[40]
cAd3-EBO Z, MVA-BN® Filo	Zaire EBOV (Mayinga)	UK	Phase 1	Completed	2014-2017	[32,47]
INO-4201, INO-9012	Zaire EBOV	USA	Phase 1	Completed	2015-2018	[40]
HPIV3/#HNF/EbovZ GP vaccine	Zaire EBOV	USA	Phase 1	Active, not recruiting	2018-2020	[40]
ChAd3-EBO-Z, MVA Multi-Filo Ebola Vaccine	Mayinga EBOV	USA	Phase 1	Completed	2018-2020	[32,47]
cAd3- EBO S vaccine	Zaire EBOV (Mayinga)	Uganda	Phase 1	Completed	2019-2020	[47]
cAd3-Marburg cAd3-EBO-S	Zaire EBOV (Mayinga)	USA	Phase 1	Recruiting	2021	[47]

VACCINE CURRENTLY IN FIELD TRIAL: SUDAN VIRUS DISEASE

WHO R&D Blueprint meeting

■cAd3

chAdOX1

rVSV SUDV GP

RCT protocol development

 cRCT ring vaccination of contact (randomized to vaccination now and in 21 days)

CAd3-EBO S (NIAID/Sabine institute)

 Chimpanzee adenovirus serotype 3 vectored Ebola vaccine encoding the sudan ebolavirus GP

 Phase I studies (safety, tolerabilit and Immunogenecity) completed in Uganda and US: results not published yet

MARBURG VIRUS DISEASE

Epidemiology

- Discovered in 1967
- Epidemic (sporadic and large outbreak in multiple countries)

Virus

- Family: Filoviridae, Genus: Marburg virus, Species: Marburg marburgvirus
- Zoonosis → reservoir: bats → vertebrates
- Transmission:
 - Animal (reservoir, vertebrates) to human (exposition to bat faeces)
 - Human to human +++

Disease

- Incubation 2-21 days
- Aspecific acute febrile illness (abrupt onset)
- \blacksquare Narrow clinical sprectrum ightarrow severe illness
- CRF 70-85%

Public Health impact (travelers?)

•Angola

•DR Congo

•Germany

•Ghana

•Guinea •Kenya •Serbia

•Uganda

•South Africa

Years	Origin (country)	#cases	#deaths (CFR)
1967	Uganda (Germany)*	31	7 (23%)
1975	Zimbabwe (South Africa)	3	1 (33%)
1980	Kenya (Kenya)	2	1 (50%)
1987	Kenya (Kenya)	1	1 (100%)
1990	Russia (Russia)*	1	1 (100%)
1998- 2000	Durba (DRC)	154	128 (83%)
2004- 2005	Uige Province (Angola)	252	227 (90%)
2007	Glod mine Kamwenge (Uganda)	4	1 (25%)
2008	Cave Maramagambo (Uganda)	1	-
2008	Cave Maramagambo (Uganda)	1	1 (100%)
2012	Kabale (Uganda)	15	4 (27%)
2014	Kampala (Uganda)	1	1 (100%)
2017	Kween (Uganda)	4	3 (75%)
2021	Guéckédou (Guinea)	1	1 (100%)
2022	Ashanti region (Ghana)	ongoing	ongoing

Outbreaks:

1967-2022 (33 ans): 7 2022-2022 (22 ans): 8

MARBURG VIRUS DISEASE VACCINE CANDIDATE

DNA vaccine (NIH)

- DNA vaccine expressing the GP from the Marburg virus
- Phase I studies: Vaccine immunogenecity and safety
 - Well tolerated, no serious adverse events

rVSV N4CT1 (ProfectusBioSciences Inc)

- Replication-competent, live, attenuated rVSV vectored vaccine encoding the Marburg virus GP
- Preclinical studies: Vaccine effiacy in NHPs

Table 2. Protective efficacy studies of MARV vaccines in NHPs.

Vaccine Modality	Challenge Virus	Vaccine Doses	Time to Challenge (d)	Survival (%)	Ref. #
Inactivated Virus					
Inactivated MARV	MARV	2	21	50	44
Replication Incompetent Vaccines					
Virus-like Replicon Particle (VRP)					
VRP-MARV GP	MARV	3	35	100	45
VRP-MARV NP	MARV	3	35	67	45
VRP-MARV GP + VRP-MARV NP	MARV	3	35	100	45
Adenovirus Vector					
Ad5.MARV GP	MARV	1	28	100	46
CAdVax-panFilo	MARV	2	42	100	27
DNA					
MARV GP	MARV	4	21	100	46
MARV GP	MARV	3	28	67	47
MARV GP	MARV	3	56	83	30
EBOV GP + SUDV GP + MARV GP + RAVV GP	MARV	3	56	100	30
VLP					
MARV GP, MARV GP + NP	MARV	3	28	100	48
MARV GP/NP/VP40 + Poly-IC	MARV	3	28	100	49
MARV GP/NP/VP40 + QS-21	MARV	3	28	100	49
Replication Competent Vaccines					
Recombinant Vesicular Stomatitis Virus					
VSV-MARV	MARV	1	28	100	39
VSV-EBOV + VSV-SUDV + VSV-MARV	MARV	1	28	75	40
Mixed Modality					
MARV GP DNA + Ad5.MARV GP	MARV	4	42	100	46

COMBINED FILOVIRUS VACCINE CANDIDATES

ChAd3-EBOV (GSK)

- Non replicating, simian adenovirus (serotype 3) vectored vaccine encoding for the zaire ebolavirus GP
- Administration as a single intramuscular dose
- Also combined with the sudan ebolavirus GP (primer)
- Also studied in combination with an MVA-BN-Filo (booster)
- Phase I studies (safety and immunogenecity)
- Phase II studies in Cameroon, Mali, Nigeria and Senegal
 - Adults and children
 - No AEs
 - 92% Ab at 1 month, 88-90% persitence Ab at 1 year

DNA vaccine (NIH)

- DNA vaccine expressing the GP from the zaire and sudan ebolavirus
- Phase I studies: Vaccine immunogenecity and safety
 - Well tolerated, no serious adverse events

Ad26.Filo & MVA-BN-Filo (JANSSEN)

- Replicant-incompetent human Adenovirus 26 vectored vaccine encoding the GP of the zaire and sudan ebolavirus, and Marburg virus
- Non replicating, MVA viral vector encoding the GP of zaire and sudan ebolavirus, Marburg virus and the NP of Tai Forest ebolavirus
- Preclinical studies: Vaccine efficacy in NHPs, persistance Ab >1 year
- Phase I study: Vaccine immunogenecity and safety

ChAdOx1 biEBOV (University of Oxford)

- Bivalent chimpanzee engineered adenovirus serotype Y25 vectored vaccine encoding the zaire and sudan ebolavirus GP
- Phase I studies I (UK), Ib (Tanzania): result not published yet

De santis Lancet ID 2016; Ewer NEJM 2016; Tapia Lancet ID 2016; Suschack Hum Vac&IT 2019; Bockstal Plos One 2022; Sarwar JID 2015

https://www.who.int/publications/m/item/sudan-virus-vaccine-tracker---list-of-vaccine-candidates-in-research---development;

COMBINED FILOVIRUS VACCINE CANDIDATES

NCT Number	Viral Target	Vaccine	Phase	Study Dates	Country
NCT02509494	EBOV	ChAd3.EBOV+MVA-BN-Filo	3	Study Start: Sept. 2015	Sierra Leone
	SUDV			Study Completion: Aug. 2019	
	TAFV				
	MARV				
NCT02911415	EBOV	VSV-BOV+AdS.EBOV	1	Study Start: Sept. 2016	Russian Fed.
				Study Completion: Dec. 2017	
NCT03072030	EBOV	VSV-BOV+AdS.EBOV	4	Study Start: Aug. 2017	Guinea
		Placebo		Study Completion: Dec. 2019	Russian Fed.
NCT02344407	EBOV	VSV-BOV	2	Study Statt: Jan. 2015	Liberia
		ChAd3.EBOV		Study Completion: June 2020	
		Placebo			
NCT03140774	EBOV	Ad26EBOV+MAV-BN-Filo VSV-EBOV		Study Start: May 2017	UK
	SUDV			Study Completion: July 2020	
	TAPV				
	MARV				
NCT03583606	EBOV	ChAd3.EBOV+MVA-BN-Filo	1	Study Start: Oct. 2018	USA
	SUDV			Study Completion: Aug. 2020	
	TAFV				
	MARV				
NCT02661464	EBOV	Ad26ZBOV	3	Study Start: May 2016	USA Burkina Fa
	SUDV	MVA-BN-Filo		Study Completion: April 2023	Côte D'Ivoire
	TAFV				France
Notice and	MARV	Max 7000		Church Church May 2016	115.4
NCT02661464	EBOV	Ad26ZBOV	3	Study Start: May 2016	AZU
	SUDV TAPV	MVA-BN-Filo		Study Completion: April 2023	Burkina Faso
					Côte D'Ivoire
	MARV				France

NCT Number	Viral Target	Vaccine	Phase	Study Dates	Country
NCT03140774	EBOV	Ad26EBOV+MAV-BN-Filo VSV-EBOV	1/2	Study Start: May 2017	UK
	SUDV			Study Completion: July 2020	
	TARV				
	MARV				
CT02313077	EBOV	MVA-BN-Filo	1	Study Start: Dec. 2014	UK
	SUDV	Ad26EBOV		Study Completion: March 2016	
	TAFV	Placebo			
	MARV				
CT02267109	EBOV	ChAd3.EBOV+MVA-BN-Filo ChAd3.EBOV+Phcebo	1	Study Stat: Oct. 2014	Mali
	SUDV			Study Completion: April 2016	
	TAFV				
	MARV				
CT02376426	EBOV	Ad26EBOV	1	Study Start: March 2015	Kenya
	SUDV	MVA-BN-Filo		Study Completion: June 2016	
	TAPV				
	MARV				
CT02543268	EBOV	Ad26EBOV	3	Study Start: Sept. 2015	USA
	SUDV	MVA-BN-Filo		Study Completion: July 2016	
	TAPV				
	MARV				
CT02368119	EBOV	ChAd3.EBOV+MVA-BN-Filo	1	Study Start: March 2015	Mali
	SUDV			Study Completion: Sept. 2016	
	TAPV				
	MARV				
CT02376400	EBOV	MVA-BN-Filo	1	Study Start: April 2015	Tanzania
	SUDV	Ad26EBOV		Study Completion: Sept. 2016	Uganda
	TARV	Placebo			
	MARV				
CT02543567	EBOV	Ad26EBOV	3	Study Start: Sept. 2015	USA
	SUDV	MVA-BN-Filo		Study Completion: Nov. 2016	
	TAPV				
	MARV				
CT02408913	EBOV	MVA-BN-Filo ChAd3.EBOV+MVA-BN-Filo	1	Study Start: March 2015	USA
	SUDV			Study Completion: April 2017	
	TARV				
	MARV				
CT02325050	EBOV	MVA-BN-Filo	1	Study Start: Jan. 2015	USA
	SUDV	Ad26EBOV		Study Completion: May 2017	
	TAPV	Placebo			
	MARV				
CT02451891	EBOV	MVA-EBO V	1	Study Start: April 2015	UK
		ChAd3.EBOV		Study Completion: Aug. 2017	
CT02240875	EBOV	ChAd3.EBOV+MVA-BN-Filo	1	Study Start: Sept. 2014	UK
	SUDV			Study Completion: Aug. 2017	
	TAPV				
	MARV				
CT02495246	EBOV	ChAd3.EBOV	1	Study Start: Sept. 21, 2015	UK
		Ad26EBOV		Study Completion: Aug. 2017	
CT02416453	EBOV	MVA-BN-Filo	2	Study Start: June 2015	France UK
	SUDV	Ad26EBOV		Study Completion: Jan. 2018	
	TAPV	Placebo			
	MARV		_		
CT02598388	EBOV	Ad26EBOV	2	Study Start: Jan. 2016	USA
	SUDV	MVA-BN-Filo		Study Completion: Dec. 2018	Kenya
	TAPV				Mozambique
	MARV				Nigeria
					Tanzania
			_		Uganda
CT02354404	EBOV SUDV	ChAd3.EBOV	1	Study Start: Jan. 2015	Uganda
		ChAd3.EBOV+ChAd3.SUDV		Study Completion: April 2017	
-		MVA-EBOV	_		
CT02891980	EBOV	Ad26EBOV	1	Study Start: March 2017	USA
	SUDV	MVA-BN-Filo		Study Completion: March 2019	
	TAFV				
-	MARV		_		
CT02876328	EBOV	Ad26EBOV	2	Study Start: March 2017	Guines
	SUDV	MVA-BN-Filo		Study Completion: March 2019	Liberia
	TAPV	VSV-BOV			Mali
_	MARV	Placebo			Sierra Leone
CT02564523	EBOV	Ad26EBOV+MVA-BN-Filo	2	Study Start: Nov. 2015	Burkina Faso
	SUDV	Placebo		Study Completion: March 2019	Côte D'Ivoire
	TARV				Kenya
	MARV				Uganda

CONCLUSION

2014-16 Ebola outbreak changed the paradigm

2 approved vaccines for Ebola virus disease (zaire ebolavirus)

- rVSV:
 - Long term immunity
 - Immunogenecity in HIV+
 - Suitable for large scale vaccination campaign
- Ad26-MVA
 - Logisitics (2 dose regimen)
- Significant number of phase I/II data from different vaccine platforms and in different populations for EBOV, SUDV, MARV, LASV
- Experience in conducting trials in emerging settings
- Need for more potent and versatile vaccine platforms
- Role of combined filovirus (+/-LASV) vaccines ?
- More understanding on the disease pathogenesis is required